

CONTAMINATED LAND RISK ASSESSMENT

Phase 2 Environmental Site Investigation Report

Site

Windmill Meadow Windmill Road Towersey OX9 3QQ

ClientGillian Probets

Report Reference PH2-2022-000026

Prepared by STM Environmental Consultants Ltd

Date 16/06/2022

TABLE OF CONTENTS

TΑ	BLE OF C	CONTENTS	2
1	DOC	JMENT CONTROL	5
2	DISC	LAIMERS	6
3	EXEC	CUTIVE SUMMARY	7
4		ODUCTIONvelopment Proposal	_
		port Objectives	
_	•	•	
5		MARY OF DESK STUDY FINDINGS	
		Locationrent Site and Surrounding Land Uses	
		History	
		vious Site Investigations	
		alitative Risk Assessment	
	5.5.1	Potential Sources	11
	5.5.2	Potential Receptors	11
	5.5.3	Conceptual Site Risk Model	11
6	SITE	INVESTIGATION	12
	6.1 Str	ategy and Scope of the Site Investigation and Risk Assessment	12
	6.1.1	Sampling Strategy	12
	6.1.2	On-site Screening of Volatile Organic Compounds	12
	6.1.3	Sample Collection and Transport	
	6.1.4	Laboratory Analysis	
	6.1.5	Groundwater, Ground Gas and Vapour Monitoring	
		Investigation Findings	
	6.2.1	Ground Conditions	
	6.2.2	Groundwater	
	6.2.3 6.3 Lab	Visual and Olfactory Signs of Contamination poratory Sample Analysis Results	
7		ERIC QUANTITATIVE RISK ASSESSMENT	
		neric Assessment Criteria for Soils	
	7.1.1	Soil Organic Matter Content	
		tistical Tests	
	7.2.1	Test Scenario	14

	7.2.2	Non-Detects	. 14
	7.2.3	Data Distribution	. 14
	7.3 Re	sults of Statistical Analysis	14
	7.3.1	Contaminants Exceeding Generic Assessment Criteria	. 14
	7.3.2	Statistical Analysis	. 15
	7.4 As	bestos	15
	7.5 Gr	ound Gas Risk Assessment	15
В	RE-A	ASSESSMENT OF POTENTIAL POLLUTANT LINKAGES	.16
	8.1 Po	tential Risks to On-Site Human Health	18
	8.2 Po	tential Risks to Off-Site Human Health	18
	8.3 Po	tential Risks to Groundwater Receptors	18
	8.4 Po	tential Risks to Surface Water Receptors	18
	8.5 Po	tential Risks to Ecological Receptors	19
	8.6 Po	tential Risks to Property Receptors	19
9	CON	CLUSIONS	.19
10		OMMENDATIONS	
10		Remedial Action	
		Watching Brief and Discovery Strategy Health and Safety	
		Waste Disposal	
		Services	
11	INFC	RMATION GAPS AND UNCERTAINTIES	.22
12	APP	ENDICES	.23
	12.1	Appendix 1 – Proposed Development Plans	23
	12.2	Appendix 2 - Borehole Location Plan	24
	12.3	Appendix 3 - Borehole Logs	25
	12.4	Appendix 4 - Photographs	26
	12.5	Appendix 5 – Laboratory Certification	35
	12.6	Appendix 6 – Adopted Generic Assessment Criteria	36
	12.6.	1 Soils Criteria	. 36
	12.7	Appendix 7 – Statistical Analysis Summary	38
	12.8	Appendix 8 – Ground Gas Monitoring Results	39
	12.9	Appendix 9 - Assessment Methodology	40
13	ΔRR	REVIATIONS	42
14	REF	ERENCES	.43

TABLES

Table 1: Summary of potential contamination sources, period of operation and distance from site	11
Table 2: Elevated Contaminants	15
Table 3: Summary of ground gas monitoring results	15
Table 4: Results of Qualitative Risk Assessment	17
Table 5: Summary of revised conceptual site risk model	20
Table 6: Contamination Risk Matrix	40
Table 7: Assessment description for risk scores	40
Table 8: Risk Classification System	41
Figure 1: Maps showing the location of the site	10

1 DOCUMENT CONTROL

CONTAMINATED LAND RISK ASSESSMENT PHASE 2 ENVIRONMENTAL SITE INVESTIGATION REPORT

Site Address: Windmill Meadow

Windmill Road Towersey OX9 3QQ

Site Coordinates: 473330, 205747

Prepared for: Gillian Probets

Report Reference: PH2-2022-000026

Version No: 1.0

Date: 16/06/2022

Report Author: Kelley Swana (BSc, MSc)

GeoEnvironmental Consultant

Authorised by: Simon Makoni (BSc, MSc)

Environmental Engineer, Director

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ

Report Reference: PH2-2022-000026

2 DISCLAIMERS

This report and any information or advice which it contains, is provided by STM Environmental Consultants Ltd (STM) and can only be used and relied upon by Gillian Probets (Client).

STM has exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant when undertaking works of this nature. However, STM gives no warranty, representation or assurance as to the accuracy or completeness of any information, assessments or evaluations presented within this report. Furthermore, STM accepts no liability whatsoever for any loss or damage arising from the interpretation or use of the information contained within this report. Any party other than the Client using or placing reliance upon any information contained in this report, do so at their own risk.

This report excludes consideration of potential hazards arising from any activities at the Site other than normal use and occupancy for the intended land uses. Hazards associated with any other activities have not been assessed and must be subject to a specific risk assessment by the parties responsible for those activities.

It should be noted that this report has been produced for environmental purposes only. It should not in any way be construed to be or used to replace a geotechnical survey, structural survey, asbestos survey, buried services survey, unexploded ordnance survey or invasive plant survey.

3 EXECUTIVE SUMMARY

SECTION	SUMMARY
Site Location and Description	The site is located at Windmill Meadow, Windmill Road, Towersey, OX9 3QQ and is centred at national grid reference 473330, 205747. The site has an area of approximately 0.8 ha.
Proposed Development	The development proposal is for the conversion of part of the existing stables and barn into residential use, providing a 1-bedroom dwelling with gardens. It is understood that private gardens are included in the proposed development.
Summary of Phase 1 Desk Study	A Phase 1 Desk Study was carried out by STM in May 2019 which indicated that the site has been subject to past potentially contaminative land uses (PCLUs) including Stables while off site PCLUs include a Sewage Works. A conceptual risk site model was constructed and a qualitative risk assessment carried out. This identified potentially significant Potential Pollutant Linkages with respect to human health and property receptors. Additionally, it was noted that a search of the BGS Radon dataset indicates that the property lies in an area with 3 – 5% chance of being affected by naturally occurring Radon gas. Therefore, Radon protective measures are necessary. The Desk Study recommended that an intrusive site investigation be carried out with the objective of determining the presence and extent of any soil
Summary of Site Investigation	contamination at the site. Site investigation works were carried out on the 28 th of April 2022. A total of 12no. boreholes (BH01 – BH12) were excavated to a maximum depth of 1 mbgl using a dynamic windowless sampler rig. A total of 18no. soil samples were collected from depths ranging between 0.2 – 0.9 mbgl and submitted to a UKAS/MCERTS accredited laboratory for analysis of Heavy Metals, TPH, BTEX, PAHs, Pesticides and Asbestos. Additionally, 4no. samples were analysed for Microbial Soil Sample Analysis (Coliforms, E. Coli and Streptococci). 2no. of the boreholes (BH03 and BH07) were installed as groundwater, ground gas and vapour monitoring wells. 3no. rounds of ground gas monitoring were undertaken over 3 weeks.
Updated Contamination Assessment	The strata encountered generally consisted of Made Ground comprising sandy gravelly Silt and Clay which was encountered to depths between 0.15 – 0.5 mbgl and to a maximum depth of 0.9 mbgl in BH10. This was underlain by Clay to the base of the boreholes. Visual indications of contamination of the Made Ground were observed (i.e.

SECTION	SUMMARY
	fragments of brick, concrete and cinder blocks) generally across the site. No significant odours were recorded during the investigation. Elevated PID readings were recorded during the site investigation in locations BH03 – BH09 with a maximum reading of 422 ppm in BH08.
	A Generic Quantitative Risk Assessment was carried out where the results of the soil sample analysis were compared to Generic Assessment Criteria (GAC) for a residential housing with home-grown produce land use scenario.
	Results of the soil Bacteriological sample analysis indicate elevated concentrations of Coliforms and Enterococci in 2no. of the 4no. samples analysed.
	Ground gas monitoring did not identify any concentrations of Methane or Carbon Dioxide. A Gas Screening Value of 0.0026 l/hr was calculated using the results of the monitoring which indicates that the site should be classified as Wilson and Card "Characteristic Situation 1 (CS1 – Very Low Gas Risk) meaning that gas protection measures are not required. However, given that the site lies within an area with 3 – 5% chance of being affected by naturally occurring Radon gas, Radon protective measures are necessary.
	The Conceptual Risk Model for the site was reassessed incorporating the results of the site investigation. Potentially Significant Potential Pollutant Linkages were considered to exist with respect to human health receptors due to the elevated Bacteriological contaminants that were identified in the area of BH03. These are concerned with the risk of human health receptors (construction workers and future occupiers) being exposed to the contamination identified while undertaking groundworks and recreational activities in gardens.
	Given the findings of the site investigation, it is recommended that remedial measures are undertaken. However, the only location in which contamination was identified within the red line boundary which will be covered in soft landscaping is BH03. Therefore, remediation is recommended only in the area of BH03 in order to break the Potential Pollutant Linkages identified and to render the site suitable for the proposed residential end use.
Conclusions and Recommendations	Remedial measures will likely comprise of the excavation of Made Ground and replacement with clean certified fill to a depth of 600mm around a 2m radius of this area depending on visual signs of contamination observed during the excavation. 2no. Validation samples will be collected to ensure the imported material is clean.
	Once completed, the remedial works will need to be validated by a qualified Environmental Consultant and a remediation verification report submitted to the Local Planning Authority for approval prior to occupation of the development.
	It is recommended that a "watching brief" is kept at all times during the development. Should any unexpected contamination be encountered then the discovery strategy outlined in this document should be followed.

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ
 Report Reference: PH2-2022-000026
 Date: June 22

4 INTRODUCTION

STM Environmental Consultants Limited were commissioned by Gillian Probets to undertake a preliminary risk assessment at Windmill Meadow, Windmill Road, Towersey, OX9 3QQ (the site).

4.1 Development Proposal

The study is required to support planning permission <u>P19/S0606/FUL</u> for the conversion of part of the existing stables and barn into residential use, providing a 1-bedroom dwelling. It is understood that there are proposals to include soft landscaping in the development.

The proposed development plans are available in Appendix 1.

4.2 Report Objectives

The main objectives of the study were to:

- Provide information for a generic quantitative risk assessment (GQRA) to be undertaken;
- Refine the Conceptual Site Risk Model using the findings of the GQRA;
- Inform the need for and scope of any remedial works that may be required.

A summary of the findings of the site investigation and GQRA are detailed within this report.

This report should be read in conjunction with the Desk Study Report (Ref: PH1-2019-000040) produced for the site by STM Environmental Consultants in May 2019, which is summarised below.

5 SUMMARY OF DESK STUDY FINDINGS

5.1 Site Location

The site is located at Windmill Meadow, Windmill Road, Towersey, OX9 3QQ at grid reference is 473330, 205747. The site has an area of approximately 0.8 ha.

The site lies within the jurisdiction of South Oxfordshire District Council in terms of the planning process. Maps showing the location of the site are shown in the figure below.

5.2 Current Site and Surrounding Land Uses

The site currently comprises vacant Stables with associated yard area, soft landscaping and entry track. The surrounding area is Agricultural Land.

5.3 Site History

Examination of Ordnance Survey historic maps revealed that the site was open undeveloped land (potentially Agricultural) from c. 1880 until 2002 when unspecified development occurred, presumed to be the current Stables area. It was also informed by the Client that various cattle and poultry have been kept on the site since c. 2004. The surrounding area has been largely open Agricultural Land with a Sewage Works in the north.

The Phase 1 Desktop Study indicated that the site and immediate surrounding area had been subject to past potentially contaminative uses including Stables while off site PCLUs include a Sewage Works.

Figure 1: Maps showing the location of the site.

5.4 Previous Site Investigations

A search of relevant information on South Oxfordshire District Council's planning portal did not identify any records of previous contaminated land site investigations at or in the vicinity of the site.

5.5 Qualitative Risk Assessment

A qualitative risk assessment was undertaken in order to assess the magnitude of the potential risks identified in the Phase 1 Report.

5.5.1 Potential Sources

Any Potentially Contaminative Land Uses (PCLUs) within a 50m radius of the site as well as any PCLUs with high pollution migration potential within 250m of the site were considered to be of concern and were included within the assessment.

A summary is provided in the table below.

Table 1: Summary of potential contamination sources, period of operation and distance from site.

Site Name	Industrial Profile	Approx. Year Use Established	Approx. Year Use Ended	Direction	Approx. Distance from Site (m)
Stables	Agricultural Land	c. 2002	Current (2019)*	Onsite	0
Sewage Works	Sewage Works & Sewage Farms	c. 1971	Current (2019) *	N	62

^{*}The Phase 1 Report was written in 2019

5.5.2 Potential Receptors

Potential human health receptors were considered to include future site users, construction workers and neighbours. Property receptors were considered to include onsite buildings and services.

Data from the BGS indicates that the site is underlain by bedrock deposits consisting of Gault Formation comprising mudstone; Purbeck Group comprising limestone argillaceous rocks interbedded and Portland Stone Formation comprising limestone which are classified as a Secondary (Undifferentiated) and Unproductive Aquifer. No superficial deposits were identified in the search. There are no groundwater Source Protection Zones onsite or within 250m of the site.

No surface water receptors were identified onsite or within 250m of the site.

No designated ecological receptors were identified onsite or within 250m of the site.

5.5.3 Conceptual Site Risk Model

A preliminary conceptual site risk model (CSM) was constructed in order to assess potential pollutant linkages.

Potentially significant potential pollutant linkages (PPLs) were identified with respect to:

- Human health receptors (PPL1a)
- Property (PPL6a)

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ

Report Reference: PH2-2022-000026

The desk study recommended that an intrusive site investigation be carried out to determine the presence and extent of any soil contamination at the site.

6 SITE INVESTIGATION

The site investigation works were carried out on the 28th of April 2022 and were undertaken in general accordance with the following guidance:

- Land contamination risk management (LCRM) guidance DEFRA;
- BS 10175 Code of practice for the Investigation of potentially contaminated sites British Standard Institution;
- BS 10176:2020 Taking soil samples for determination of volatile organic compounds (VOCs):
- BS5930:2015 Code of Practice for Ground Investigation
- BS 8485: 2015 Code of practice for the Characterisation and remediation from Ground Gas in Affected Developments. British Standard Institution;
- BS8576:2013, Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs);
- C665, 2007 Assessing Risks posed by Hazardous Ground Gases to Buildings CIRIA.

6.1 Strategy and Scope of the Site Investigation and Risk Assessment

6.1.1 Sampling Strategy

A total of 12no. sampling locations (BH01 – BH12) were excavated to 1 mbgl for contamination assessment purposes. A semi-targeted sampling strategy was used to select the locations of the exploratory positions, with boreholes being generally equally spaced out across the site, with efforts being made to ensure that samples were collected from the most sensitive areas (i.e. gardens) of the proposed development.

As the investigation was primarily focused on assessing the quality of near surface soils, samples were collected at depths between 0.2 - 0.9 mbgl.

A map showing the locations of boreholes and the borehole logs are available in Appendix 2.

6.1.2 On-site Screening of Volatile Organic Compounds

Soil from each borehole was screened on site for volatile organic compounds (VOCs) using a hand held Minirae photo-ionisation detector (PID) which has a detection limit of 0.1 parts per billion (ppb). The PID was calibrated in the field prior to use using a gas of known concentration (isobutylene gas – 100ppm).

Soil vapour readings were taken using the headspace method, which involved placing the soil sample into a sealed plastic bag and then taking a reading by placing the PID filter into the bag.

6.1.3 Sample Collection and Transport

All samples were put into sample containers (jars and tubs) that were tightly sealed with minimal headspace. The sample containers were put into a cooler box immediately on collection and kept cool until analysis was undertaken at the laboratory.

6.1.4 Laboratory Analysis

A total of 18no. soil samples were submitted to a UKAS\MCERTs accredited laboratory for analysis of the following:

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ

Report Reference: PH2-2022-000026

- ► Heavy Metals Arsenic, Boron, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc;
- Petroleum Hydrocarbons (TPHCWG);
- Total Phenols Total Phenols (Monohydric);
- Monoaromatics Benzene, Toluene, Ethylbenzene, p & m-xylene, o-xylene, MTBE (Methyl Tertiary Butyl Ether);
- Speciated PAHs Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene;
- Total PAHs Speciated Total EPA-16 PAHs;
- Asbestos Screening and Quantification;
- Inorganics pH Automated, Total Cyanide, Water Soluble Sulphate, Sulphide, Total Organic Carbon (TOC);
- Pesticides (2no. samples);
- Microbial Soil Sample Analysis (Coliforms, E. Coli and Streptococci) (4no. samples).

6.1.5 Groundwater, Ground Gas and Vapour Monitoring

2no. of the boreholes were installed with standpipes equipped with monitoring apparatus to a depth of approximately 1mbgl in order to allow for the measurement of groundwater levels and the estimation of Gas Screening Values (GSVs) as per CIRIA 665 and BS8485 guidance.

The wells were constructed using 63mm HDPE plain pipe in a bentonite seal from existing ground level to 1.0 mbgl in a gravel surround to the base of pipe. The wells were fitted with a gas tap assembly and a lockable cover at ground level to provide protection.

The frequency of ground gas monitoring on site was decided in line with recommendations by CIRIA to provide monitoring data sufficient to allow the prediction of worst-case conditions. Based on the gas generation potential of the site and the sensitivity of the development, 3 monitoring visits were considered appropriate.

6.2 Site Investigation Findings

6.2.1 Ground Conditions

Made Ground comprising sandy gravelly Silt and Clay was generally encountered to depths between 0.15 - 0.5 mbgl and to a maximum depth of 0.9 mbgl in BH10. This was underlain by Clay.

The borehole logs are shown in Appendix 3 and photographs from some of the soils extracted from the boreholes are presented in Appendix 4.

6.2.2 Groundwater

Groundwater was not encountered during the site investigation or during the subsequent monitoring rounds.

6.2.3 Visual and Olfactory Signs of Contamination

Visual indications of contamination of the Made Ground were observed (i.e. fragments of brick, concrete and cinder blocks) generally across the site. No significant odours were recorded during the investigation. Elevated PID readings were recorded during the site investigation in locations BH03 – BH09 with a maximum reading of 422 ppm in BH08. The PID readings can be seen in the borehole logs shown in Appendix 3.

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ

Report Reference: PH2-2022-000026

6.3 Laboratory Sample Analysis Results

A total of 18no. soil samples were submitted for analysis. The full results of the laboratory sample analysis can be seen in Appendix 5.

7 GENERIC QUANTITATIVE RISK ASSESSMENT

A GQRA was conducted using the soil analytical results in order to further evaluate the significance of the potential pollutant linkages identified in the Preliminary Risk Assessment in the Desk Study.

7.1 Generic Assessment Criteria for Soils

The GAC used for the screening of the soils and their sources are outlined in the table in Appendix 6. The GAC used are a combination of the DEFRA's Category 4 Screening Levels and the CIEH\LQM GAC for residential with homegrown produce land use scenario.

7.1.1 Soil Organic Matter Content

Sample results indicated that soils on the site have an average Total Organic Carbon (TOC) content of 1.53%, which based on a conversion factor of 1.72, indicates a Soil Organic Matter (SOM) of around 2.64%. Therefore, a soil organic matter content of 2.5% was assumed.

7.2 Statistical Tests

The statistical analysis was carried out in accordance with the methodology laid out in the document "Guidance on comparing soil contamination data with a critical concentration" published by the Chartered Institute of Environmental Health and CLAIRE.

7.2.1 Test Scenario

The "Planning" scenario was used to undertake the statistical tests. Under this scenario, the Alternative Hypothesis is that "the true mean is lower than the critical concentration" and the Null hypothesis is that "the true mean is equal to or greater than the critical concentration". The critical concentration was taken as the relevant GAC for each contaminant.

7.2.2 Non-Detects

For the purpose of the statistical tests, sample results where the contaminant concentrations were below the limit of detection were set to zero. Statistical tests were only carried out on datasets where at least one of the samples returned a contaminant concentration above the limit of detection.

7.2.3 Data Distribution

The Shapiro-Wilk normality test was used to assess whether datasets were normally or non-normally distributed.

7.3 Results of Statistical Analysis

7.3.1 Contaminants Exceeding Generic Assessment Criteria

A summary of contaminants that were found to be present in elevated concentrations is shown Table 2 below. It should be noted that soil guideline values for Bacteriological contaminants mentioned below could not be identified.

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ

Report Reference: PH2-2022-000026

Table 2: Elevated Contaminants

Contaminant	No. of Exceedances	Maximum Mea Concentrat		Exceedance
	Exceedances	Concentration	Unit	Borehole Locations
Coliforms	1	1700	MPN/g	BH10/1 at 0.3 mbgl
Enterococci	2	700	cfu/g	BH10/1 at 0.3 mbgl and BH03/2* at 0.5 mbgl

^{*}Maximum value location

7.3.2 Statistical Analysis

The results of statistical analysis are presented in Appendix 7.

7.4 Asbestos

No Asbestos was detected in any of the samples analysed.

7.5 Ground Gas Risk Assessment

A summary of the gas monitoring results is presented in Table 3 below. The full results are available in Appendix 8.

Table 3: Summary of ground gas monitoring results

Borehole	Barometric Pressure	Flow I/hr	CH₄ %	CO ₂ %	O ₂ %	H₂S ppm	CO ppm	VOCs ppm
BH03	1011-1018	0.2	0.0	0.6-1.3	20.1-20.2	0.0	0.0	0.0-0.5
BH07	1011-1018	0.1-0.2	0.0	1.1-1.2	20.3-20.4	0.0	0.0	1.1-5.3

No Methane was detected at the site. A maximum Carbon Dioxide concentration of 1.3% by volume in air (v/v) and maximum flow rate of 0.2 l/hr were recorded. A maximum PID reading of **5.3** ppm was observed during the monitoring rounds.

In accordance with CIRIA C665, the Gas Screening Value (GSV) for Carbon Dioxide was calculated as follows:

$$GSV = 0.013 * 0.2 = 0.0026 I/hr$$

A GSV of 0.0026 l/hr indicates that the site should be classified as Wilson and Card "Characteristic Situation 1 (CS1) – Very Low Gas Risk" meaning that standard gas protection measures are not considered to be required.

However, given that the site lies within an area with 3 - 5% chance of being affected by naturally occurring Radon gas, Radon protective measures are necessary.

8 RE-ASSESSMENT OF POTENTIAL POLLUTANT LINKAGES

The Potential Pollutant Linkages (PPLs) identified as being plausible in the Desk Study are concerned with the following risks:

- Risk of direct contact (ingestion and absorption) with and inhalation of contaminants to on-site human health receptors (PPL1a Future Occupiers and PPL1c Construction Workers);
- Risk of injury/death of on-site human health receptors as a result of explosion due to accumulation of ground gas from on and off-site sources in confined spaces within on-site dwellings. (PPL1b Future Occupiers and PPL1d Construction Workers);
- Risk of direct contact with (ingestion and absorption) and inhalation of contaminants to off-site human health receptors as a result of on-site contaminants migrating off-site (PPL2a);
- Risk of injury/death to off-site human health receptors as a result of explosion due to migration of on-site ground gas and subsequent accumulation in confined spaces in off-site buildings. (PPL2b);
- Risk of deterioration of groundwater quality resulting from the migration of on-site contaminants into the underlying aquifer (PPL3);
- Risk of deterioration of surface water quality resulting from the migration and entry of on-site contaminants into the surface water receptor (PPL4);
- Risk of deterioration of ecological quality resulting from the migration and entry of on-site contaminants to the ecological receptor during development and after completion (PPL5);
- Risk of damage to buildings and services from on and off-site contaminants (PPL6a);
- Risk of damage to property as a result of explosion due to accumulation of ground gas from on and off-site sources in confined spaces within buildings (PPL6b).

The Desk Study concluded that PPL1a and PPL6a had the potential to be significant. All of the PPLs were re-assessed considering the soil analytical results obtained from site investigation. The table below presents the results of the re-assessment.

A detailed explanation of the risk assessment methodology is available in Appendix 9.

Table 4: Results of Qualitative Risk Assessment.

CRITERIA					OTENTIAL F	POTENTIAL POLLUTANT LINKAGES	INKAGES				
	PPL1a	PPL1b	PPL1c	PPL1d	PPL2a	PPL2b	PPL3	PPL4	PPL5	PPL6a	PPL6b
POTENTIAL PATHWAY/ RECEPTOR	Contact/ Inhalation - Human Health (Future	Explosion - Human Health (Future Occupiers)	Contact/ Inhalation - Human Health (Construction Workers)	Explosion - Human Health (Construction Workers)	Contact/ Inhalation - Offsite Human Health Receptors	Explosion - Human Health Receptors	Contact - Groundwater	Contact - Surface Water	Contact - Ecology	Contact - On & Off- Site Property	Explosion - On & Off-Site Property
SEVERITY	Major (4)	Major (4)	Major (4)	Major (4)	Major (4)	Major (4)	Moderate (3)	Moderate (3)	Moderate (3)	Moderate (3)	Moderate (3)
ГІКЕГІНООБ	Possible (3)	Improbable (1)	Remote (2)	Improbable (1)	Improbable (1)	Improbable (1)	Improbable (1)	Improbable (1)	Improbable (1)	Improbable (1)	Improbable (1)
RISK	Moderate (12)	Low (4)	Low to Moderate (8)	Low (4)	Low (4)	Low (4)	Very Low (3)	Very Low (3)	Very Low (3)	Very Low (3)	Very Low (3)
POTENTIALLY SIGNIFCANT?	YES	Q Q	YES	O N	O _N	O _N	O Z	ON	O N	ON	ON

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ Report Reference: PH2-2022-000026 Date: June 22

8.1 Potential Risks to On-Site Human Health

PPL1a and PPL1c are concerned with the risk of direct contact (ingestion and dermal absorption) with and inhalation of on and off-site contaminants by on site human health receptors. PPL1a and PPL1c are considered to have the potential to be significant given the Bacteriological contamination identified. As the proposal is to introduce residential dwellings with gardens, it is possible that human health receptors (i.e. construction workers and future occupiers of the dwellings) could be exposed to contamination during groundworks and while undertaking recreational activities in the gardens. However, it is considered that any potential risks to groundworkers can be adequately dealt with by ensuring that standard health and safety measures are implemented during the construction phase.

Moreover, it should be noted that although contamination was identified in BH10 and BH03, as well as elevated VOCs in BH03 – BH09, the only location in which contamination was identified within the red line boundary which will be covered in soft landscaping is BH03. This is shown in the proposed site plan in Appendix 1.

PPL1b and PPL1d are concerned with the risk of injury/death of on-site human health receptors as a result of explosion due to the potential accumulation of ground gases and vapours from on and offsite sources. These PPLs are considered unlikely to have the potential as no significant concentrations of explosive ground gases or vapours were identified during the ground gas monitoring.

8.2 Potential Risks to Off-Site Human Health

PPL2a is concerned with the risk of direct contact and inhalation of contaminants emanating from the site by off-site human health receptors. PPL2a is considered unlikely to have the potential to be significant as it is considered that the contaminants present at the site are not of sufficient magnitude or mobility as to significantly impact off-site human receptors.

PPL2b is concerned with the risk of injury/death of on-site human health receptors as a result of explosion due to accumulation of ground gases from on-site sources. PPL2b is considered unlikely to have the potential to be significant as no significant explosive ground gases or vapours were identified during the ground gas monitoring.

8.3 Potential Risks to Groundwater Receptors

PPL3 is concerned with the risk of deterioration of groundwater quality resulting from the migration of on-site contaminants into the underlying aquifer. PPL3 is considered unlikely to have the potential to be significant. Although some Bacteriological contaminants were identified in 2no. of the soil samples, it is considered that these are unlikely to be of sufficient magnitude to significantly impact groundwater receptors. Additionally, the underlying aquifers are classified as a Secondary (Undifferentiated) and Unproductive and there are no groundwater Source Protection Zones onsite or within 250m of the site. Moreover, groundwater was not encountered during the site investigation or during the subsequent monitoring rounds.

8.4 Potential Risks to Surface Water Receptors

PPL4 is concerned with the risk of negative impacts on surface water quality resulting from the migration and entry of on-site contaminants into surface water receptors. PPL4 is considered unlikely to have the potential to be significant as no surface water bodies were identified within the vicinity of the site.

8.5 Potential Risks to Ecological Receptors

PPL5 is concerned with the risk of negative ecological impacts resulting from potential on-site contaminants. PPL5 is considered unlikely to have the potential to be significant given that no designated ecological receptors were identified onsite or within 250m of the site.

8.6 Potential Risks to Property Receptors

PPL6a is concerned with the risk of damage to onsite buildings and services from on and off-site contaminants. If contaminated, the soil may contain aggressive chemicals (i.e. Sulphates, VOCs) that can attack building materials and services. PPL6a is considered unlikely to have the potential to be significant as site investigation did not identify any elevated levels of aggressive contaminants to significantly impact property receptors.

PPL6b is concerned with the risk of damage to property as a result of explosion due to migration of on and off-site ground gases and vapours and their subsequent accumulation in confined spaces in on-site buildings. PPL6b is considered unlikely to have the potential to be significant as no significant explosive ground gases or vapours were identified during the ground gas monitoring.

9 CONCLUSIONS

In response to the findings of the Desk Study carried out for the site by STM Environmental Consultants, an environmental site investigation was carried out on the 28th of April 2022. The objective of the investigation was to determine the presence and extent of potential contamination at the site in order to further inform the risk assessment process.

A total of 12no. boreholes were advanced to a maximum depth of 1 mbgl for the purposes of environmental soil sampling. 18no. soil samples were taken from depths ranging from 0.2 – 0.9 mbgl. The samples were submitted to a UKAS/MCERTS accredited laboratory for analysis of Heavy Metals, TPH, BTEX, PAHs, Pesticides and Asbestos. Additionally, 4no. samples were analysed for Microbial Soil Sample Analysis (Coliforms, E. Coli and Streptococci).

2no. of the boreholes were excavated and installed as groundwater and ground gas monitoring wells. 3no. rounds of ground gas and vapour monitoring were undertaken over a period of 3 weeks.

A Generic Quantitative Risk Assessment was carried out where the results of the soil sample analysis were compared to Generic Assessment Criteria (GAC) for a residential with home-grown produce land use scenario.

Results of the soil Bacteriological sample analysis indicate elevated concentrations of Coliforms and Enterococci in 2no. of the 4no. samples analysed.

Ground gas monitoring did not identify any concentrations of Methane or Carbon Dioxide. A GSV of 0.0026 l/hr was calculated using the results of the monitoring which indicates that the site should be classified as Wilson and Card "Characteristic Situation 1 (CS1 – Very Low Gas Risk) meaning that gas protection measures are not required. However, given that the site lies within an area with 3-5% chance of being affected by naturally occurring Radon gas, Radon protective measures are necessary.

The Conceptual Risk Model for the site was reassessed incorporating the results of the site investigation. Potentially Significant Potential Pollutant Linkages were considered to exist with respect to human health receptors due to the elevated Bacteriological contaminants that were identified in the area of BH03. These were concerned with the risk of human health receptors (construction workers

and future occupiers) being exposed to the contamination identified while undertaking groundworks and recreational activities in gardens.

The revised conceptual site risk model is summarised in Table 5 below.

Table 5: Summary of revised conceptual site risk model

Potential Receptor	Potential Pathway	Potential Hazard	PSPPL?	Risk
On-Site Human Health	Ingestion/Absorption Inhalation	Adverse health Injury/Death	Yes	Moderate
(Future Occupiers & Groundworkers)	Build-up of Methane/ VOCs in confined spaces	Explosion/ Fire Injury/Death	No	Low
Off-Site Human	Ingestion/Absorption Inhalation	Adverse health Injury/Death	No	Low
Health	Build-up of Methane/ VOCs in confined spaces	Explosion/ Fire Injury/Death	No	Low
Groundwater	Percolation/Leaching	Adverse groundwater quality	No	Very Low
Surface Water	Lateral Migration Groundwater baseflow	Adverse Surface water quality	No	Very Low
Ecology	Ingestion/Absorption	Adverse health Injury/Death	No	Very Low
Bronouty	Physical Contact/Absorption	Damage to building and services	No	Very Low
Property	Build-up of Methane/ VOCs in confined spaces	Explosion/ Fire Damage to building	No	Very Low

10 RECOMMENDATIONS

10.1 Remedial Action

Given the findings of the site investigation, it is recommended that remedial measures are undertaken. However, the only location in which contamination was identified within the red line boundary which will be covered in soft landscaping is BH03. Therefore, remediation is recommended only in the area of BH03 in order to break the Potential Pollutant Linkages identified and to render the site suitable for the proposed residential end use.

Remedial measures will likely comprise of the excavation of Made Ground and replacement with clean certified fill to a depth of 600mm around a 2m radius of this area depending on visual signs of contamination observed during the excavation. 2no. Validation samples will be collected to ensure the imported material is clean.

Once completed, the remedial works will need to be validated by a qualified Environmental Consultant and a remediation verification report submitted to the Local Planning Authority for approval prior to occupation of the development.

10.2 Watching Brief and Discovery Strategy

It is recommended that a "watching brief" is kept at all times during the development. Should any unexpected contamination be encountered then the discovery strategy outlined below should be followed.

- Works should be halted if any suspicious ground conditions are identified by groundworkers;
- The Contractor should assess the need for any immediate health and safety or environmental management control measures. If control measures are considered to be required, they should be implemented;
- The Contractor should notify the Client's Environmental Consultant and the Local Planning Authority;
- The Environmental Consultant should attend the site to record the extent of 'contamination' and if necessary, to collect samples;
- If remedial action is considered necessary then the proposed works should be agreed with the Local Planning Authority prior to implementation;
- Once remediation is complete, the Environmental Consultant should collate evidence of work carried out for inclusion in a Remediation Verification Report which should be submitted to the Local Planning Authority.

10.3 Health and Safety

Given that contaminants have been identified on the site, measures will be necessary to protect the health and safety of site workers during the site works. The following measures are suggested to provide a minimum level of protection.

- Provision of appropriate Personal Protective Equipment (PPE) including protective clothing, footwear, gloves and dust masks to all groundworkers on-site. These should not be removed from site, and advice should be given on when and how they are to be used;
- Great care should be taken to minimise the amount of dust and mud generated on-site;
- Good practices relating to personal hygiene (i.e. washing and changing procedures) should be adhered to on-site, i.e. food and drink should only be consumed within designated areas on the site and smoking should be prohibited in all working areas;
- Availability of site welfare;
- Daily safety briefings.

All site works should be carried out in accordance with Health and Safety Executive regulations and guidelines and the Contractor's Construction Health and Safety Plan. Particular should be made to the Health and Safety Executive (HSE) document "Protection of Workers and the General Public during the Development of Contaminated Land".

10.4 Waste Disposal

Groundworks at the site are likely to give rise to waste soils. These may require classification before removal from site to an appropriately licensed facility for treatment or final disposal. The Environment Agency's Hazardous Waste Technical Guidance document (WM3) outlines the methodology for classifying wastes.

The contractor will need to keep a full documentary record of the waste disposal works in line with Duty of Care requirements. The record will include waste transfer notes and details of the receiving site. Copies of all relevant documents should be provided to the Client's Environmental Consultant for inclusion in the remediation verification report.

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQ

Report Reference: PH2-2022-000026

10.5 Services

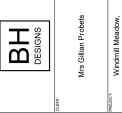
The Statutory Water Undertaker for the area should be contacted in relation to new services that are to be installed as part of the proposed development in order to determine their specification for the type of pipework/conduits that should be used on this site.

11 INFORMATION GAPS AND UNCERTAINTIES

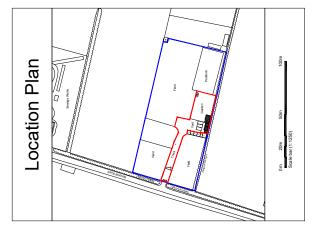
Assumptions have been made regarding the nature and scale of the activities that took place on the site and the types of potential contaminants that may have resulted. There are therefore a number of uncertainties associated with the investigation which include, but are not limited to, the following:

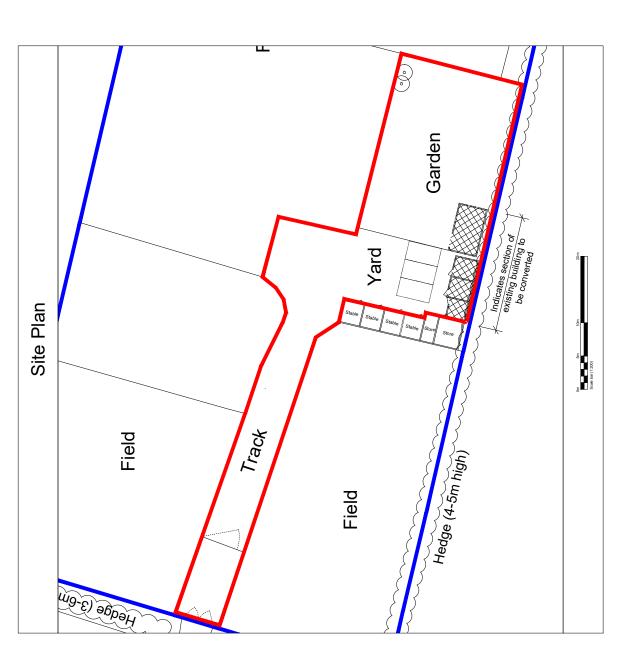
- This report is based on data obtained from the chosen sampling locations only. Although efforts have been made to ensure adequate coverage of the site when designing the investigation, it is nonetheless possible that (as with any site investigation) there may be locations which were not sampled where localised pockets of contamination exist.
- The site investigation and risk assessment were designed to investigate only the most likely contaminants associated with the former Agricultural use. The presence of additional unknown contaminants cannot be discounted.

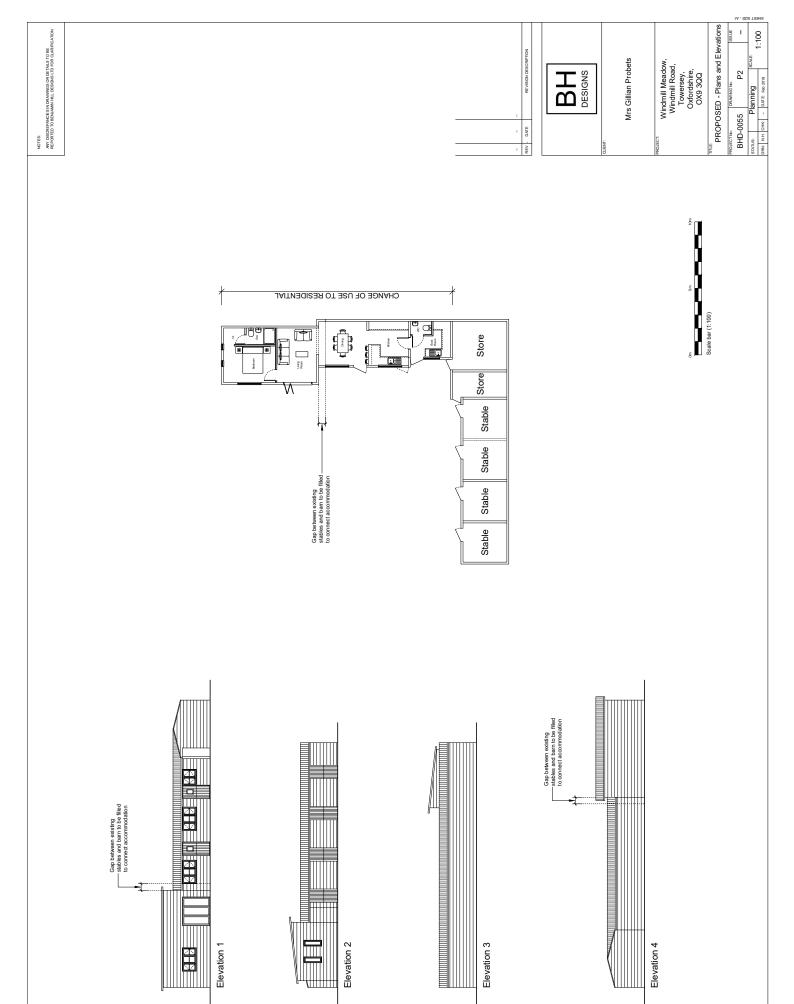
These uncertainties will need to be reviewed along with the Conceptual Site Risk Model should further information come to light in the future.


12 APPENDICES

12.1 Appendix 1 – Proposed Development Plans

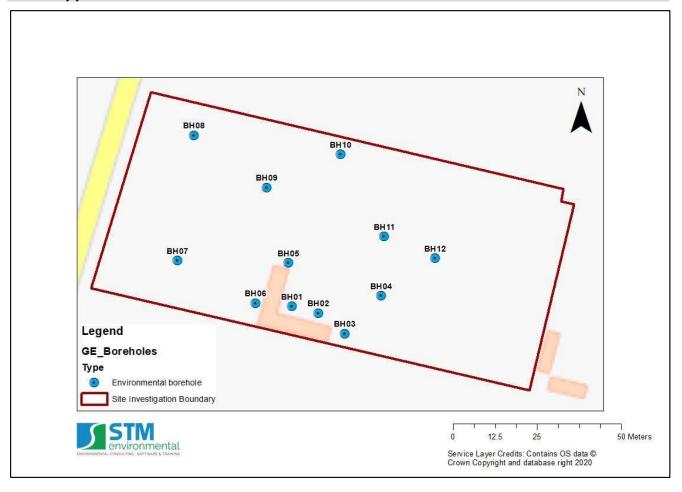

NOTES: ANY DISCREPANCE SIN DRAWINGS OR DETAILS TO BE REPORTED TO BENJAMIN HILL DESIGNS LTD FOR CLARIFICATION





		1A - 32	DS 135	HS.
ά, ,,	n and Site	- ISS NE	SCALE: 1:200	1:1250
Windmill Meadow, Windmill Road, Towersey, Oxfordshire, OX9 3QQ	mE-PROPOSED - Location and Site Plan	DRAWING No:	Planning	DATE Feb 2019
<u>=</u>	PROPOSI Plan	DECTIN:	<u> </u>	N.H. CHK
	TILE P	PROJECTINO: BHD-(STATUS:	DRN:

Elevation 1


Elevation 2

Elevation 3

Elevation 4

12.2 Appendix 2 - Borehole Location Plan

12.3 Appendix 3 - Borehole Logs

ENVIRONMENTAL	STW environm consulting . softwa	nental RE & TRAINING				Во	reho	ole Log	Borehole No. BH01	
Projec	t Name:	Windmill N		v, Windmill	Project No.		Co-ords:	473304.00 - 205768.00	Sheet 1 of 1 Hole Type	\dashv
		Noau, Iow			Windmill Meadow, Windmill Road, Towersey				WLS Scale	\dashv
Locati	on:	Windmill N	/leadov	v, Windmill Road	, Iowersey		Level:	73.00	1:50	_
Client		Benjamin	Hill Des	signs			Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	
Well	Water		1 1	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Zogona	·		\dashv
	Ottines	0.30 0.40 0.80	ES D ES	PID=0 PID=0	0.70	72.85 72.30 72.00		Made Ground - Dark and light greyis slightly sandy SILT. Abundant small fragments and rare small roof tile fr Made Ground - Mottled dark greenis yellow and dark greyish brown CLA brick fragments Mottled dark greenish grey, dark ye greyish brown CLAY End of borehole at 1.00 m	brick agments sh grey, dark Y. Rare small	
									9	

STM						Borehole No.		
environmental environmental environmental consulting . software & training				Bor	reho	ole Log	BH02	
						3	Sheet 1 of 1	
Project Name: Wind Road	dmill Meadow d, Towersey		Project No. Windmill Meadow, Wind Towersey	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	
Location: Wind	dmill Meadow	, Windmill Road,	Towersey		Level:	73.00	Scale 1:50	
Client: Benj	amin Hill Des	signs			Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	
Well Liver -		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Strikes Depth		PID=4 PID=0	0.50	72.50	<u>×</u>	Made Ground - Dark brown and dark brown SILT. Abundant small brick fra Rare small cinder brick fragments. A rootlets Mottled dark greenish grey, dark ora	agments. bundant	
0.8	0 D		1.00	72.00	×	dark greyish brown silty CLAY End of borehole at 1.00 m	1	-
Remarks							2 3 4 5 6 7 8	

	STM								Borehole N	О.
ENVIRONMENTAL	ENVIRONM CONSULTING . SOFTWA	nental RE & TRAINING				Boi	reho	ole Log	ВН03	
							•	515 - 59	Sheet 1 of	1
Projec	t Name:			v, Windmill	Project No.	dmill Road	Co-ords:	473304.00 - 205768.00	Hole Type	
<u> </u>		Road, Tow			Towersey	ariii redu,			WLS Scale	
Locati	on:	Windmill M	1eadov	v, Windmill Road	, Towersey		Level:	73.00	1:50	
Client	:	Benjamin I	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	У
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	Depth (m) 0.40 0.50 0.90	Type D D D	Results PID=55 PID=0	(m) 0.40 0.80 1.00	(m) 72.60 72.20 72.00		Made Ground - Light grey and dark clayey, slightly gravelly SILT. Abund small fragments of siltstone. Occasi cinder block fragments and occasio fragments Mottled dark grey and dark orange of Mottled dark greenish grey, dark yell greyish brown silty CLAY End of borehole at 1.00 m	grey slightly ant large and onal small nal flint	1 2 3 4 5 6 7 8 9
										10 —

Borehole advanced to a maximum depth of 1mbgl. No water encountered. A monitoring well was installed within a 10mm pea gravel surround using 63mm HDPE plain pipe to 1mbgl. A bentonite cement seal was laid from the ground surface to a depth of 1mbgl. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).

	STM								Borehole N	lo.
ENVIRONMENTAL	environm CONSULTING . SOFTWA	nental RE & TRAINING				Bo	reho	ole Log	BH04	
								3	Sheet 1 of	1
Projec	t Name:	Windmill M Road, Tow		v, Windmill	Project No. Windmill Meadow, Windowersey	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	9
Locati	on:			v, Windmill Road			Level:	73.00	Scale 1:50	
Client:		Benjamin I	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged B MF/HM	у
\A/-II	Water	Samples	s and l	n Situ Testing	Depth	Level		Otratura Danamintian	•	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.30	D	PID=68	0.20	72.80	× × × × × × × × × × × × × × × × × × ×	Made Ground - Light grey and dark slightly clayey, very slightly gravelly small brick fragments Mottled dark greenish grey, dark yel greyish brown silty CLAY. Abundant	SILT. Rare	- - - - - - -
					1.00	72.00	×	End of borehole at 1.00 m		1 -
										2 -
										3 -
										4 -
										5 -
										6 -
										- - - - - -
										7 —
										8 —
										9 -
Rema									1	10 —

ENVIRONMENTAL	STIV environm consulting software	nental RE & TRAINING				Во	reh	ole Log	Borehole N BH05 Sheet 1 of	
Projec	t Name:	Windmill M Road, Tow	leadov	v, Windmill	Project No.	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type	
Locati	on:			v, Windmill Road	, Towersey		Level:	73.00	Scale 1:50	
Client	:	Benjamin l	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged B MF/HM	у
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description		
YVGII	Strikes	Depth (m) 0.60	Type	Results PID=68	(m) 0.30 0.40 1.00	(m) 72.70 72.60 72.00		Made Ground - Mottled light grey, lightown and light brown very slightly. SILT. Abundant brick tile fragments, brick fragments, abundant siltstone. Made Ground - Dark greenish grey orangish brown CLAY. Rare small b fragments Dark greenish grey, dark orangish brick greenish grey dark yellow CLAY. End of borehole at 1.00 m	ght reddish sandy, cobbly occasional fragments and dark rick	3 1 2 3 4 5 7 8 9 1 1 1 1 1 1 1 1 1
Rema	<u> </u>									10 —

	STM								Borehole N	lo.
NVIRONMENTAL C	ONSULTING . SOFTWA	nental RE & TRAINING				Boı	reho	ole Log	BH06	
								J	Sheet 1 of	1
Projec	t Name:	Windmill M Road, Tow	leadov ersey	,	Project No. Windmill Meadow, Win	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	e
Locatio	on:			w, Windmill Road,	•		Level:	73.00	Scale 1:50	
Client:		Benjamin H		signs			Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	
	\A/-4	Samples	and I	In Situ Testing	D 41-	11			IVII /I IIVI	
Well	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.20	ES	PID=153	0.30	72.70		Made Ground - Mottled dark grey ar orange silty CLAY. Abundant brick fr Mottled dark yellow, light brown and CLAY	nd dark agments light grey	
					1.00	72.00	<u> </u>	End of borehole at 1.00 m		1 -
										- - - -
										2 —
										- - - -
										3 -
										-
										4 —
										- - -
										5 —
										- - - -
										6 -
										7 —
										8 —
										- - - - -
										9 —
										-
										10 —

	STM								Borehole N	lo.
IVIRONMENT	ENVIRONM AL CONSULTING . SOFTWA	nental RE & TRAINING				Boı	eho	ole Log	BH07	•
									Sheet 1 of	1
Proje	ct Name:	Windmill M Road, Tow	leadov ersey	v, Windmill	Project No. Windmill Meadow, Wir Towersey	ndmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	Э
_oca	ion:	Windmill M	leadov	v, Windmill Road,	Towersey		Level:	73.00	Scale	
		***************************************		T, TTITICAL,			20101.		1:50	
Clien	t:	Benjamin I				1	Dates:	28/04/2022 - 28/04/2022	Logged B MF/HM	y
Wel	Water		and I	In Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona			
					0.15	72.85		Made Ground - Mottled dark grey ar orange CLAY. Rare small brick fragr	nd dark ments /	=
		0.30	ES	PID=263				Mottled dark yellow, light brown and CLAY. Occasional rootlets	light grey]
				5.5			<u> </u>	CLAY. Occasional rootiets		-
				PID=163	1.00	72.00		<u> </u>] _ =
					1.00	72.00		End of borehole at 1.00 m		1 -
										=
]
										-
										2 —
										=
										-
										3 —
]
										=
]
										4 –
]
										-
										=
										5 -
										=
]
										-
										6 =
										=
										7 -
]
										=
										8 -
										=
										=
										9 -
]
										=
										10 -

Borehole advanced to a maximum depth of 1mbgl. No water encountered. A monitoring well was installed within a 10mm pea gravel surround using 63mm HDPE plain pipe to 1mbgl. A bentonite cement seal was laid from the ground surface to a depth of 1mbgl. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).

	STM								Borehole N	lo.
ENVIRONMENTAL	CONSULTING . SOFTWA	nental RE & TRAINING				Bo	reho	ole Log	BH08	
								9	Sheet 1 of	1
Projec	t Name:	Windmill M Road, Tow	leadov ersey	v, Windmill	Project No. Windmill Meadow, Wir	ndmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	9
Locati	on:	Windmill M	1eadov	w, Windmill Road			Level:	73.00	Scale 1:50	
Client	:	Benjamin l	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	у
Well	Water Strikes			In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Otrikos	Depth (m)	Туре	Results	(111)	(111)	***********	Made ground- Dark grey and dark o	range CLAV	
		0.40	ES	PID=326	0.40	72.60		Rare small brick fragments		
		0.60	D	PID=422	0.10	72.00		Mottled light yellow, dark grey, light of brown CLAY	grey and light	
					1.00	72.00		End of borehole at 1.00 m		1 =
										2 -
										3 -
										=
										4 —
										4 -
										5 -
										=
										6 —
										7 =
										=
										8 —
										=
										9 —
Rema	rks									10 —

	STM								Borehole N	O.
ENVIRONMENTAL	environm	nental RE & TRAINING				Bo	reh	ole Log	ВН09	- 1
									Sheet 1 of	
Projec	t Name:	Windmill M Road, Tow		v, Windmill	Project No. Windmill Meadow, Win	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	•
					Towersey				Scale	
Locati	on:	Windmill M	1eadov	v, Windmill Road	, Towersey		Level:	73.00	1:50	
Client:		Benjamin I	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	/
Well	Water Strikes			n Situ Testing	Depth (m)	Level	Legend	Stratum Description		
Well	Water Strikes	Depth (m) 0.40	Type ES	Results PID=399	Depth (m) 0.30 0.50 1.00	T2.70 72.50 72.00	Legend	Made Ground - Mottled dark orange and dark greyish brown, slightly sar SILT. Rare small brick fragments an cinder block fragments. Occasional fragments Made Ground - Dark Grey and dark CLAY. Rare small brick fragments Mottled dark yellow, dark grey, dark light brown CLAY End of borehole at 1.00 m	e, light grey dy, gravelly d rare small concrete orange silty	1 2 3 4 5 5 7
										8 —
										9
Rema	rks									10 -

	STM								Borehole N	lo.
NVIRONMENTAL	environn consulting . softw	nental RE & TRAINING				Boı	reho	ole Log	BH10	
								•	Sheet 1 of	1
Projec	t Name:	Windmill M Road, Tow	leadov ersey	v, Windmill	Project No. Windmill Meadow, Wir Towersey	ndmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	
Locati	on.	Windmill M	leadov	v, Windmill Road	Towersey		Level:	73.00	Scale	
				.,					1:50	
Client		Benjamin I					Dates:	28/04/2022 - 28/04/2022	Logged By MF/HM	y
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
vveii	Strikes	Depth (m) 0.30	Type	Results PID=0 PID=6	0.90 1.00	72.10 72.00	Legend	Made Ground - Dark brown and dar brown clayey SILT. Abundant large I fragments. Occasional large concre Rare cement fragments Dark greyish brown CLAY End of borehole at 1.00 m	k greyish orick	3
										8 1 1 1 1 1 1 1 1 1
										10 —

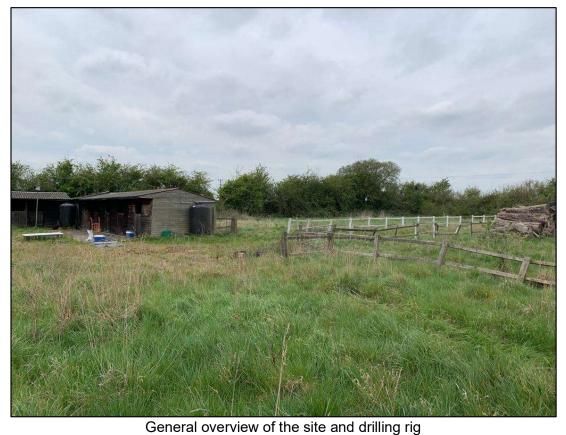
Remarks

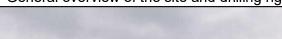
Borehole advanced to a maximum depth of 1mbgl. No water encountered. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).

	STM								Borehole N	0.
NVIRONMENTAL (ENVIRONM CONSULTING . SOFTWA	nental RE & TRAINING				Boı	eho	ole Log	BH11	
									Sheet 1 of	1
Projec	t Name:	Windmill M Road, Tow		-	Project No. Windmill Meadow, Win Towersey	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	9
Location	on:	Windmill M	leadov	v, Windmill Road,	Towersey		Level:	73.00	Scale 1:50	
Client:		Benjamin H	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged By	y
	Water	Samples	and I	n Situ Testing	Depth	Level		<u> </u>		
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.30	D	PID=0	0.30	72.70		Made Ground - Mottled dark brown, and dark grey clayey SILT. Rare sm fragments. Abundant rootlets	dark orange all brick	-
				PID=0				Mottled dark yellow, dark grey and o brown CLAY	dark greyish	-
					1.00	72.00		End of borehole at 1.00 m		1 -
										<u>-</u>
										2 -
										_ =
										3 —
										_
										4 —
										=
										=
										5 -
										=
										=
										6 -
										=
										7 —
										8 -
										9 -
										- - -
										10 —

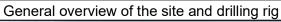
Borehole advanced to a maximum depth of 1mbgl. No water encountered. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).

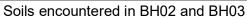
	STM								Borehole N	lo.
VIRONMENTAL	environm Consulting Softwa	nental ARE & TRAINING				Boı	eho	ole Log	BH12	
									Sheet 1 of	1
rojec	t Name:	Windmill M Road, Tow	leadov ersey	v, Windmill	Project No. Windmill Meadow, Win Towersey	dmill Road,	Co-ords:	473304.00 - 205768.00	Hole Type WLS	e
.ocati	on:	Windmill M	leadov	v, Windmill Road	, Towersey		Level:	73.00	Scale 1:50	
Client:		Benjamin l	Hill De	signs			Dates:	28/04/2022 - 28/04/2022	Logged B	у
Well	Water	Samples	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
vvoii	Strikes	Depth (m)	Туре	Results	(m)	(m)	×××××	Mottled dark brown, dark orangish a		
				PID=0	0.35	72.65	<u> </u>	very slightly clayey SILT. Abundant r Mottled dark yellow, dark grey and g	ootlets	_
		0.80	ES	PID=0				CLAY	•	=
		0.80	ES		1.00	72.00		End of borehole at 1.00 m		1 =
										=
										2 —
										3 —
										4 =
										5 —
										6 —
										_ _ _
										7 -
										8 —
										=
										9 —
										10 —

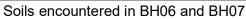

Remarks


Borehole advanced to a maximum depth of 1mbgl. No water encountered. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).

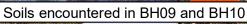
12.4 Appendix 4 - Photographs







Soils encountered in BH04 and BH05



Soils encountered in BH11 and BH12

12.5 Appendix 5 - Laboratory Certification

Lab Info STM ENVIRONMENTAL LTD Unit 6 Crane Mews 32 Gould Road Twickenham London TW2 6RS

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: labinfo@stmenvironmental.co.uk

Analytical Report Number: 22-55511

Project / Site name: Windmill Meadow Samples received on: 29/04/2022

Your job number: WINDMILL MEADOW Samples instructed on/ 29/04/2022

Analysis started on:

Your order number: WINDMILL MEADOW Analysis completed by: 12/05/2022

Report Issue Number: 1 **Report issued on:** 12/05/2022

Samples Analysed: 18 soil samples

Signed:

Anna Goc

Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2259775	2259776	2259777	2259778	2259779
Sample Reference				BH01/1	BH01/2	BH01/3	BH02/1	BH02/2
Sample Number				None Supplied				
Depth (m)				0.30	0.40	0.80	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	-	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	19	-	24	12	21
Total mass of sample received	kg	0.001	NONE	0.3	-	0.3	0.8	0.5
	•							
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	EC	N/A	EC	EC	DBU
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8	-	8.1	8.7	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	35	-	120	550	190
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.018	-	0.061	0.28	0.097
Equivalent)	mg/l	1.25	MCERTS	17.5	-	-	277	-
Sulphide	mg/kg	1	MCERTS	< 1.0	-	4.9	8.9	2.5
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.6	-	0.6	6.6	0.9
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Total PAH	•							
	mg/kg	0.8	MCERTS	. 0.00		. 0.00	. 0.00	. 0 00
Speciated Total EPA-16 PAHs	mg/kg	0.0	AICERTS	< 0.80	-	< 0.80	< 0.80	< 0.80

Lab Sample Number				2259775	2259776	2259777	2259778	2259779
Sample Reference				BH01/1	BH01/2	BH01/3	BH02/1	BH02/2
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.40	0.80	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	_							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	-	17	10	15
Boron (water soluble)	mg/kg	0.2	MCERTS	2	-	0.7	8.2	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	0.7	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	-	33	19	30
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	-	29	100	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	-	20	57	19
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27	-	84	11	31
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	62	-	76	360	68
Monoaromatics & Oxygenates Benzene Toluene	µg/kg µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	< 1.0 < 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-	=	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Petroleum Hydrocarbons TPH C10 - C40 EH CU 1D TOTAL	mg/kg	10	MCERTS	-		< 10	-	32
	-					110		32
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	_	=	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU 1D AL								
TPH-CWG - Allphauc >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg mg/kg		MCERTS MCERTS	< 8.0 < 8.0	-	-	< 8.0 < 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_HS_ID_AL}		8						
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	=	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	=	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 _{BH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{BH_CU+HS_1D_AL}	mg/kg mg/kg	8 8 10	MCERTS MCERTS	< 8.0 < 10	-	-	< 8.0 < 10	-
TPH-CWG - Aliphatic >EC21 - EC35 _{BH, CU, ID, AL} TPH-CWG - Aliphatic (EC5 - EC35) _{BH, CU+HS, ID, AL} TPH-CWG - Aromatic >EC5 - EC7 _{HS, ID, AR}	mg/kg mg/kg	8 8 10	MCERTS MCERTS	< 8.0 < 10	-		< 8.0 < 10	
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_1D_AL} TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR} TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC10 - EC12 _{EH CU_1D_AR}	mg/kg mg/kg	8 8 10 0.001 0.001	MCERTS MCERTS MCERTS MCERTS	< 8.0 < 10 < 0.001 < 0.001	-	-	< 8.0 < 10 < 0.001 < 0.001	-
TPH-CWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_1D_AL} TPH-CWG - Aromatic > EC5 - EC7 _{HS_1D_AR} TPH-CWG - Aromatic > EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR}	mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS	< 8.0 < 10 < 0.001 < 0.001 < 0.001		- - - -	< 8.0 < 10 < 0.001 < 0.001 < 0.001	- - - -
TPH-CWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_1D_AL} TPH-CWG - Aromatic > EC5 - EC7 _{HS_1D_AR} TPH-CWG - Aromatic > EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic > EC0 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic > EC12 - EC16 _{EH_CU_1D_AR} TPH-CWG - Aromatic > EC16 - EC21 _{EH_CU_1D_AR}	mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0		- - - -	< 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0	-
TPH-CWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_1D_AL} TPH-CWG - Aromatic > EC5 - EC7 _{HS_1D_AR} TPH-CWG - Aromatic > EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR}	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0			< 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	- - - - - -

				•		1		
Lab Sample Number				2259775	2259776	2259777	2259778	2259779
Sample Reference				BH01/1	BH01/2	BH01/3	BH02/1	BH02/2
Sample Number				None Supplied				
Depth (m)				0.30	0.40	0.80	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides					<u> </u>		<u> </u>	
		- 40	NONE					
Alachlor	μg/kg	10	NONE	-	-	-	-	-
Aldrin	μg/kg	10	NONE	-	-	-	-	-
Azinphos-ethyl	μg/kg	10	NONE	-	-	-	-	-
Azinphos-methyl	μg/kg	10	NONE	-	-	-	-	-
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-	-	-	-	-
BHC-beta	μg/kg	10	NONE	-	-	-	-	-
BHC-delta	μg/kg	10	NONE	-	-	-	-	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	-	-	-	-
Bifenthrin	μg/kg	10	NONE	-	-	-	-	-
Carbophenothion	μg/kg	10	NONE	-	-	-	-	-
Chlordane-cis	μg/kg	10	NONE	-	-	-	-	-
Chlordane-trans	μg/kg	10	NONE	-	-	-	-	-
Chlorfenvinphos	μg/kg	10	NONE	-	-	-	-	-
Chlorothalonil	μg/kg	20	NONE	-	-	-	-	-
Chlorpyrifos	μg/kg	10	NONE	-	-	-	-	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	-	-	-
Cyhalothrin (Lambda)	μg/kg	10	NONE	-	-	-	-	-
Cypermethrin (Sum)	μg/kg	10	NONE	-	-	-	-	-
DDD-o,p'	μg/kg	10	NONE	-	-	-	-	-
DDD-p,p'	μg/kg	10	NONE	-	-	-	-	-
DDE-o,p'	μg/kg	10	NONE	-	-	-	-	-
DDE-p,p'	μg/kg	10	NONE	-	-	-	-	-
DDT-o,p'	μg/kg	10	NONE	-	-	-	-	-
DDT-p,p'	μg/kg	10	NONE	-	-	-	-	-
Deltamethrin	μg/kg	10	NONE	-	-	-	-	-
Demeton-O	μg/kg	10	NONE	-	-	-	-	_
Demeton-S	μg/kg	10	NONE	_	_	_	_	_
Diazinon	μg/kg	10	NONE	_	-	-	-	_
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE			_	_	_
Dichlorvos	μg/kg	10	NONE	_		_	_	_
Dieldrin	μg/kg	10	NONE		<u> </u>	<u> </u>	-	
Dimethoate	μg/kg	10	NONE	-	<u>-</u>	-	-	-
Dimethylvinphos	μg/kg	10	NONE		<u> </u>	-	-	-
Endosulfan I (alpha isomer)	μg/kg	10	NONE		-		-	
Endosulfan II (alpha isomer)	μg/kg	10	NONE	-	-	-	-	-
Endosulfan II (beta isomer) Endosulfan sulfate	μg/kg	10	NONE	-	-	-	-	-
Endosulari suriate Endrin	μg/kg	20	NONE	-	-	-	-	-
	μg/kg	10	NONE	-	-	-	-	-
Endrin aldehyde Endrin ketone	μg/kg μg/kg	10	NONE			-		-
	μg/kg μg/kg	10	NONE		-		-	-
Ethion	μg/kg μg/kg	10	NONE	-	-	-	-	-
Etrimfos Engityathian	μg/kg μg/kg	10	NONE	-	-	-	-	
Fenthion Fonthion	μg/kg μg/kg	10	NONE					-
Fenthion	-	10	NONE	-	-	-	-	-
Fenvalerate (Sum)	μg/kg	10	NONE	-	-	-	-	-
Heptachlor	μg/kg			-	-	-	-	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-	-	-	-	-
Hexachlorobenzene	μg/kg	10	NONE	-	-	-	-	-
Hexachlorobutadiene	μg/kg	10	NONE	-	-	-	-	-
Isodrin	μg/kg	20	NONE	-	-	-	-	-
Malathion	μg/kg	10	NONE	-	-	-	-	-
Methacrifos	μg/kg	10 20	NONE NONE	-	-	-	-	-
Methoxychlor, p,p'-	μg/kg			-	-	-	-	-

Lab Sample Number				2259775	2259776	2259777	2259778	2259779
Sample Reference				BH01/1	BH01/2	BH01/3	BH02/1	BH02/2
Sample Number				None Supplied				
Depth (m)				0.30	0.40	0.80	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	-	-	-	-
Omethoate	μg/kg	20	NONE	-	-	-	-	-
Parathion	μg/kg	10	NONE	-	-	-	-	-
Parathion-methyl	μg/kg	10	NONE	-	-	-	-	-
Pendimethalin	μg/kg	10	NONE	-	-	-	-	-
Pentachlorobenzene	μg/kg	10	NONE	-	-	-	-	-
Permethrin, Cis-	μg/kg	10	NONE	-	-	-	-	-
Permethrin, Trans-	μg/kg	10	NONE	-	-	-	-	-
Phorate	μg/kg	10	NONE	-	-	-	-	-
Phosalone	μg/kg	10	NONE	-	-	-	-	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	-	-	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	-	-	-
Pirimiphos-methyl	μg/kg	10	NONE	-	-	-	-	-
Propetamphos	μg/kg	10	NONE	-	-	-	-	-
Propyzamide	μg/kg	10	NONE	-	-	-	-	-
Tecnazene	μg/kg	10	NONE	-	-	-	-	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	-	-	-	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	-	-	-	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	-	-	-
Trifluralin	μg/kg	10	NONE	-	-	-	-	-

Microbiological (Subcontracted)

Total Coliforms	mpn/g	N/A	NONE	-	See Attached	-	-	-
E. Coli	mpn/g	1	NONE	-	See Attached	-	-	-
Faecal Streptococci	cfu/g	N/A	NONE	-	See Attached	=	=	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				2259780	2259781	2259782	2259783	2259784
Sample Reference				BH03/1	BH03/2	BH03/3	BH04/1	BH05/1
Sample Number				None Supplied				
Depth (m)				0.40	0.50	0.90	0.30	0.60
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
	1		1	топе варриса	Hone Supplied	топе варриса	топе варриса	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	-	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	3.5	-	23	13	23
Total mass of sample received	kg	0.001	NONE	0.8	-	0.5	0.5	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	EC	N/A	DBU	N/A	EC
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	-	8	-	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	39	-	160	-	170
Water Soluble SO4 16hr extraction (2:1 Leachate	T			0.019	_	0.081	_	0.084
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.019		0.001		0.004
Equivalent)	mg/l	1.25	MCERTS	19.3	-	-	-	-
Sulphide	mg/kg	1	MCERTS	42	-	1.5	-	3.3
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.9	-	0.6	-	0.7
Total Phenois	•							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	_	< 0.80	_	< 0.80

Lab Sample Number				2259780	2259781	2259782	2259783	2259784
Sample Reference				BH03/1	BH03/2	BH03/3	BH04/1	BH05/1
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.50	0.90	0.30	0.60
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Tuken	1	-	ı	тчоне заррнеа	None Supplied	тчоне заррнеа	140Пе Заррпеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.8	-	13	-	12
Boron (water soluble)	mg/kg	0.2	MCERTS	1.4	-	1.3	-	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	-	< 0.2	-	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	7.6	-	29	-	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	-	18	-	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	8.1	-	19	-	18
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	6.1	-	43	-	33
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	=	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	30	-	62	-	69
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Petroleum Hydrocarbons TPH C10 - C40 EH, CU. 1D_TOTAL	mg/kg	10	MCERTS	_	-	37	-	< 10
- ET_CO_ID_TOTAL								, 10
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	_	_	-	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	9/9	_						-
	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_HS_ID_AL}	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg mg/kg	8	MCERTS MCERTS	< 8.0 < 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 _{BH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{BH_CU+HS_1D_AL}	mg/kg mg/kg mg/kg	8	MCERTS MCERTS	< 8.0 < 8.0 < 10	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_ID_AL} TPH-CWG - Aromatic >EC5 - EC7 _{HS_ID_AR}	mg/kg mg/kg	8 8 10	MCERTS MCERTS MCERTS	< 8.0 < 8.0 < 10	- - -	- - -		- - -
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_HS_ID_AL} TPH-CWG - Aromatic >EC5 - EC7 _{HS_ID_AR} TPH-CWG - Aromatic >EC7 - EC8 _{HS_ID_AR}	mg/kg mg/kg mg/kg	8 8 10	MCERTS MCERTS MCERTS MCERTS	< 8.0 < 8.0 < 10 < 0.001 < 0.001				- - -
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU_HS_ID_AL} TPH-CWG - Aromatic >EC5 - EC7 _{HS_ID_AR} TPH-CWG - Aromatic >EC7 - EC8 _{HS_ID_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_ID_AR}	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS	< 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001	- - -		-	- - -
TPH-CWG - Aliphatic >EC21 - EC35 _BH_CU_ID_AL TPH-CWG - Aliphatic (EC5 - EC35) _BH_CU_HS_ID_AL TPH-CWG - Aromatic >EC5 - EC7 _BS_ID_AR TPH-CWG - Aromatic >EC6 - EC8 _BS_ID_AR TPH-CWG - Aromatic >EC8 - EC10 _BS_ID_AR TPH-CWG - Aromatic >EC6 - EC10 _BS_ID_AR	mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0	- - - -		- - - -	
TPH-CWG - Aliphatic >EC21 - EC35 BH_CU_ID_AL TPH-CWG - Aliphatic (EC5 - EC35) BH_CU_HS_ID_AL TPH-CWG - Aromatic >EC5 - EC7 HS_ID_AR TPH-CWG - Aromatic >EC7 - EC8 HS_ID_AR TPH-CWG - Aromatic >EC8 - EC10 HS_ID_AR TPH-CWG - Aromatic >EC10 - EC12 BH_CU_ID_AR TPH-CWG - Aromatic >EC12 - EC16 BH_CU_ID_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	-	-		- - - -
TPH-CWG - Aliphatic >EC21 - EC35 _BH_CU_ID_AL TPH-CWG - Aliphatic (EC5 - EC35) _BH_CU_HS_ID_AL TPH-CWG - Aromatic >EC5 - EC7 _BS_ID_AR TPH-CWG - Aromatic >EC6 - EC8 _BS_ID_AR TPH-CWG - Aromatic >EC8 - EC10 _BS_ID_AR TPH-CWG - Aromatic >EC6 - EC10 _BS_ID_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 10 0.001 0.001 0.001 1 2	MCERTS	< 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0		- - - - - -		- - - - - -

Lab Sample Number				2259780	2259781	2259782	2259783	2259784
Sample Reference				BH03/1	BH03/2	BH03/3	BH04/1	BH05/1
Sample Number				None Supplied				
Depth (m)				0.40	0.50	0.90	0.30	0.60
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides								
Alachlor	μg/kg	10	NONE	_	I -	_	< 10	_
Aldrin	μg/kg	10	NONE	_	-	_	< 10	-
Azinphos-ethyl	μg/kg	10	NONE	-	-	-	< 10	-
Azinphos-methyl	μg/kg	10	NONE	-	-	-	< 10	-
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-	-	-	< 10	-
BHC-beta	μg/kg	10	NONE	-	-	-	< 10	-
BHC-delta	μg/kg	10	NONE	-	-	-	< 10	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	-	-	< 10	-
Bifenthrin	μg/kg	10	NONE	-	-	-	< 10	-
Carbophenothion	μg/kg	10	NONE	-	-	-	< 10	-
Chlordane-cis	μg/kg	10	NONE	-	-	-	< 10	-
Chlordane-trans	μg/kg	10	NONE	-	-	-	< 10	-
Chlorfenvinphos	μg/kg	10	NONE	-	-	-	< 10	-
Chlorothalonil	μg/kg	20	NONE	-	-	-	< 20	-
Chlorpyrifos	μg/kg	10	NONE	-	-	-	< 10	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
Cyhalothrin (Lambda)	μg/kg	10	NONE	-	-	-	< 10	-
Cypermethrin (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
DDD-o,p'	μg/kg	10	NONE	-	-	-	< 10	-
DDD-p,p'	μg/kg 	10	NONE	-	-	-	< 10	-
DDE-o,p'	μg/kg	10	NONE	-	-	-	< 10	-
DDE-p,p'	μg/kg	10	NONE	-	-	-	< 10	-
DDT-o,p'	μg/kg	10 10	NONE	-	-	-	< 10	-
DDT-p,p'	μg/kg	10	NONE NONE	-	-	-	< 10	-
Deltamethrin	μg/kg	10	NONE	-	-	-	< 10	-
Demeton-O	μg/kg μg/kg	10	NONE	-	-	-	< 10	-
Demeton-S	μg/kg μg/kg	10	NONE	-	-	-	< 10	-
Diazinon	μg/kg μg/kg	10	NONE	-	-	-	< 10	-
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE			-	< 10 < 10	
Dichlorvos Dieldrin	μg/kg	10	NONE		-	-	< 10	-
Dimethoate	μg/kg	10	NONE	-	-	-	< 10	
Dimethylvinphos	μg/kg	10	NONE		-	-	< 10	
Endosulfan I (alpha isomer)	μg/kg	10	NONE	-	-	_	< 10	
Endosulfan II (beta isomer)	μg/kg	10	NONE	-	-	-	< 10	-
Endosulfan sulfate	μg/kg	10	NONE	_	-	_	< 10	_
Endrin	μg/kg	20	NONE	-	-	-	< 20	-
Endrin aldehyde	μg/kg	10	NONE	-	-	-	< 10	-
Endrin ketone	μg/kg	10	NONE	-	-	-	< 10	-
Ethion	μg/kg	10	NONE	-	-	-	< 10	-
Etrimfos	μg/kg	10	NONE	-	-	-	< 10	-
Fenitrothion	μg/kg	10	NONE	-	-	-	< 10	-
Fenthion	μg/kg	10	NONE	-	-	-	< 10	-
Fenvalerate (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
Heptachlor	μg/kg	10	NONE	-	-	-	< 10	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-	-	-	< 10	-
Hexachlorobenzene	μg/kg	10	NONE	-	-	-	< 10	-
Hexachlorobutadiene	μg/kg	10	NONE	-	-	-	< 10	-
Isodrin	μg/kg	20	NONE	-	-	-	< 20	-
Malathion	μg/kg	10	NONE	-	-	-	< 10	-
Methacrifos	μg/kg	10	NONE	-	-	-	< 10	-
Methoxychlor, p,p'-	μg/kg	20	NONE	-	-	-	< 20	-

Lab Sample Number				2259780	2259781	2259782	2259783	2259784
Sample Reference				BH03/1	BH03/2	BH03/3	BH04/1	BH05/1
Sample Number				None Supplied				
Depth (m)				0.40	0.50	0.90	0.30	0.60
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	-	-	< 10	-
Omethoate	μg/kg	20	NONE	-	-	-	< 20	-
Parathion	μg/kg	10	NONE	-	-	-	< 10	-
Parathion-methyl	μg/kg	10	NONE	-	-	-	< 10	-
Pendimethalin	μg/kg	10	NONE	-	-	-	< 10	-
Pentachlorobenzene	μg/kg	10	NONE	-	-	-	< 10	-
Permethrin, Cis-	μg/kg	10	NONE	-	-	-	< 10	-
Permethrin, Trans-	μg/kg	10	NONE	-	-	-	< 10	-
Phorate	μg/kg	10	NONE	-	-	-	< 10	-
Phosalone	μg/kg	10	NONE	-	-	-	< 10	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	-	< 10	-
Pirimiphos-methyl	μg/kg	10	NONE	-	-	-	< 10	-
Propetamphos	μg/kg	10	NONE	-	-	-	< 10	-
Propyzamide	μg/kg	10	NONE	-	-	-	< 10	-
Tecnazene	μg/kg	10	NONE	-	-	-	< 10	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	-	-	< 10	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	-	-	< 10	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	-	< 10	-
Trifluralin	μg/kg	10	NONE	-	-	-	< 10	-

Microbiological (Subcontracted)

Total Coliforms	mpn/g	N/A	NONE	-	See Attached	-	-	-
E. Coli	mpn/g	1	NONE	-	See Attached	-	=	-
Faecal Streptococci	cfu/g	N/A	NONE	-	See Attached	=	-	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				2259785	2259786	2259787	2259788	2259789
Sample Reference				BH06/1	BH07/1	BH08/1	BH08/2	BH09/1
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.30	0.40	0.60	0.40
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	-	< 0.1
Moisture Content	%	0.01	NONE	17	19	18	-	20
Total mass of sample received	kg	0.001	NONE	0.8	0.3	0.8	-	1
·	•							
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	-
Asbestos Analyst ID	N/A	N/A	N/A	EC	DBU	EC	N/A	N/A
General Inorganics	pH Units	N/A	MCERTS	7.0	7.2	7.2	•	
pH - Automated	mg/kg	N/A 1	MCERTS	7.6 < 1.0	7.2 < 1.0	7.2 < 1.0	-	-
Total Cyanide Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	< 1.0 41	< 1.0 37		-	-
Water Soluble Sulphate as 304 1611 extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.02	0.019	30 0.015	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	18.6	15	-	-
Sulphide	mg/kg	1	MCERTS	2.2	1.8	< 1.0	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.9	1.3	0.9	-	-
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Speciated PAHs		0.05	MCEDIC					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluorene Phenanthrene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	_	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	_	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	_
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	_
bibenz(a,h)anthracene mg/kg		0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
	_							
Total PAH								

Lab Sample Number				2259785	2259786	2259787	2259788	2259789
Sample Reference				BH06/1	BH07/1	BH08/1	BH08/2	BH09/1
Sample Number				None Supplied				
Depth (m)				0.20	0.30	0.40	0.60	0.40
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	14	14	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	0.3	0.8	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	28	29	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	18	16	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	29	24	22	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	26	31	34	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	73	62	76	-	-
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	- 1
Toluene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	_
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	_
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	-
o-xylene	μg/kg	1	MCERTS	_	< 1.0	< 1.0	_	_
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	_	< 1.0	< 1.0	_	_
Petroleum Hydrocarbons TPH C10 - C40 _{EH.CU.ID.,TOTAL}	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	-	< 2.0	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0	< 8.0	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0	< 8.0	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	< 10	< 10	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	< 2.0	< 2.0	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	< 10	< 10	-	
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	< 10	< 10	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	10	< 10	-	-

I - L CI- No		2250705	2250706	2250707	2250700	2250700		
Lab Sample Number Sample Reference				2259785 BH06/1	2259786 BH07/1	2259787 BH08/1	2259788 BH08/2	2259789 BH09/1
-								
Sample Number				None Supplied 0.20	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)					0.30	0.40	0.60	0.40
Date Sampled Time Taken				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides								
Alachlor	μg/kg	10	NONE	-	-	-	_	< 10
Aldrin	μg/kg	10	NONE	_	_	_	_	< 10
Azinphos-ethyl	µg/kg	10	NONE	-	-	-	-	< 10
Azinphos-methyl	μg/kg	10	NONE	_	_	_	_	< 10
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE		-	-	-	< 10
BHC-beta	μg/kg	10	NONE		-			< 10
BHC-delta	μg/kg	10	NONE	-	-	-	-	< 10
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE		-		-	< 10
Bifenthrin	μg/kg	10	NONE	-	-	-	-	< 10
Carbophenothion	μg/kg	10	NONE	-	-	-	-	< 10
Chlordane-cis	μg/kg	10	NONE	-	-	-	-	< 10
Chlordane-trans	µg/kg	10	NONE		-			< 10
Chlorfenvinphos	µg/kg	10	NONE		-			< 10
Chlorothalonil	µg/kg	20	NONE	-	-	-	-	< 20
Chlorpyrifos	μg/kg	10	NONE	-	-	-	-	< 10
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	-	-	< 10
	μg/kg	10	NONE	-	-	-	-	
Cyhalothrin (Lambda)	μg/kg	10	NONE	-		-	-	< 10
Cypermethrin (Sum) DDD-o,p'	μg/kg	10	NONE	-	-	-	-	< 10
	μg/kg	10	NONE	-	-	-	-	< 10
DDD-p,p'	μg/kg	10	NONE	-	-	-	-	< 10 < 10
DDE-o,p'	μg/kg	10	NONE	-	-	-	-	< 10
DDE-p,p'	μg/kg	10	NONE	-	-		-	
DDT-o,p'	μg/kg	10	NONE	-	-	-	-	< 10 < 10
DDT-p,p'	μg/kg	10	NONE	-	-	_	-	< 10
Deltamethrin Demeton-O	μg/kg	10	NONE	-	-	-	-	< 10
Demeton-S	μg/kg	10	NONE	-	-	-	-	< 10
	μg/kg	10	NONE	-	-	-	-	
Diazinon Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	-	-	-	-	< 10 < 10
Dichlorvos	μg/kg	10	NONE	-	-	-	-	< 10
Dieldrin	μg/kg	10	NONE	-	-	-	-	< 10
	μg/kg	10	NONE	-	-	-	-	< 10
Dimethylvinnhos	μg/kg	10	NONE	-	-	-	-	< 10
Dimethylvinphos Endosulfan I (alpha isomer)	μg/kg	10	NONE	-	-	-	-	< 10
Endosulfan II (alpita isomer)	µg/kg	10	NONE	-	-	-	-	< 10
Endosulfan sulfate	μg/kg	10	NONE	-	-	-	-	< 10
Endrin Endrin	µg/kg	20	NONE	-	-		-	< 20
Endrin aldehyde	µg/kg	10	NONE		_			< 10
Endrin ketone	µg/kg	10	NONE		_			< 10
Ethion	μg/kg	10	NONE	-	-		-	< 10
Etrimfos	μg/kg	10	NONE	_	_	_	_	< 10
Fenitrothion	µg/kg	10	NONE	-	-	-	-	< 10
Fenthion	μg/kg	10	NONE	_	_	_	_	< 10
Fenvalerate (Sum)	µg/kg	10	NONE		-			< 10
Heptachlor	μg/kg	10	NONE	-	-	-	-	< 10
Heptachlor exo-epoxide	µg/kg	10	NONE	-	-	-	-	< 10
Hexachlorobenzene	µg/kg	10	NONE	-	-	-	-	< 10
Hexachlorobetizene Hexachlorobutadiene	μg/kg	10	NONE	-	-	-	-	< 10
Isodrin	μg/kg	20	NONE	-	-	-	-	< 10
Malathion	μg/kg	10	NONE	-	-	-	-	< 10
Methacrifos	μg/kg	10	NONE	-	-	-	-	< 10
Methoxychlor, p,p'-	μg/kg	20	NONE	-	-	-	-	< 10
ricatoxychior, p,p -	P9/ N9	٠-۷	HONE			_		< 20

Lab Sample Number				2259785	2259786	2259787	2259788	2259789
Sample Reference				BH06/1	BH07/1	BH08/1	BH08/2	BH09/1
Sample Number				None Supplied				
Depth (m)				0.20	0.30	0.40	0.60	0.40
Date Sampled				28/04/2022	28/04/2022	28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	-	-	-	< 10
Omethoate	μg/kg	20	NONE	-	-	-	-	< 20
Parathion	μg/kg	10	NONE	-	-	-	-	< 10
Parathion-methyl	μg/kg	10	NONE	-	-	-	-	< 10
Pendimethalin	μg/kg	10	NONE	-	-	-	-	< 10
Pentachlorobenzene	μg/kg	10	NONE	-	-	-	-	< 10
Permethrin, Cis-	μg/kg	10	NONE	-	-	-	-	< 10
Permethrin, Trans-	μg/kg	10	NONE	-	-	-	-	< 10
Phorate	μg/kg	10	NONE	-	-	-	-	< 10
Phosalone	μg/kg	10	NONE	-	-	-	-	< 10
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	-	-	< 10
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	-	-	< 10
Pirimiphos-methyl	μg/kg	10	NONE	-	-	-	-	< 10
Propetamphos	μg/kg	10	NONE	-	-	-	-	< 10
Propyzamide	μg/kg	10	NONE	-	-	-	-	< 10
Tecnazene	μg/kg	10	NONE	-	-	-	-	< 10
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	-	-	-	< 10
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	-	-	-	< 10
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	-	-	< 10
Trifluralin	μg/kg	10	NONE	-	-	-	-	< 10

Microbiological (Subcontracted)

Total Coliforms	mpn/g	N/A	NONE	-	-	-	See Attached	-
E. Coli	mpn/g	1	NONE	-	-	-	See Attached	-
Faecal Streptococci	cfu/g	N/A	NONE	-	-	-	See Attached	

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				2259790	2259791	2259792
Sample Reference				BH10/1	BH11/1	BH12/1
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	-	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	-	17	25
Total mass of sample received	kg	0.001	NONE	-	0.8	0.5
·						
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	N/A	EC	EC
General Inorganics pH - Automated	pH Units	N/A	MCERTS		7.4	7.4
Total Cyanide	mg/kg	1	MCERTS	_	< 1.0	< 1.0
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	_	12	12
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.006	0.006
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	6	-
Sulphide	mg/kg	1	MCERTS	-	1.1	< 1.0
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	0.9	0.5
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS MCERTS	-	< 0.05	< 0.05
Chrysene	mg/kg mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Indone(1 2 2 ed)nymana	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	ma/kc			-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg mg/kg					
	mg/kg mg/kg	0.05	MCERTS	-	< 0.05	< 0.05

Lab Sample Number				2259790	2259791	2259792
Sample Reference				BH10/1	BH11/1	BH12/1
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied
······································	1		ı	чоне зарряеа	топе зарряеа	топе заррпеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						•
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	14	30
Boron (water soluble)	mg/kg	0.2	MCERTS	-	0.7	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	27	29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	13	21
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	20	17
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	30	84
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	69	51
Monoaromatics & Oxygenates Benzene Toluene	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-		-
p & m-xylene	µg/kg	1	MCERTS		< 1.0 < 1.0	
o-xylene	µg/kg	1	MCERTS		< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS		< 1.0	
Petroleum Hydrocarbons		10	MCERTS			
TPH C10 - C40 _{EH_CU_ID_TOTAL}	mg/kg	10	MCERTS	-	-	< 10
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.001	MCERTS		< 0.001	
TPH-CWG - Aliphatic > EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	MCERTS	_	< 0.001	_
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.001	MCERTS		< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	< 1.0	_
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_ID_AL	mg/kg	2	MCERTS	<u>-</u>	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS		< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL}	mg/kg	8	MCERTS		< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU_HS_1D_AL	mg/kg	10	MCERTS		< 10	
() EII_COTID_ID_AL					× 10	_
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	_	< 0.001	I -
TPH-CWG - Aromatic > EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	< 0.001	
TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	_	< 0.001	_
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS		< 1.0	
TPH-CWG - Aromatic > EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	< 2.0	-
TPH-CWG - Aromatic > EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	_	< 10	_
TPH-CWG - Aromatic > EC21 - EC35 _{EH CU 1D AR}	mg/kg	10	MCERTS			_
TPH-CWG - Aromatic (EC5 - EC35) FH CII+HS 1D AR	mg/kg	10	MCERTS	_		_
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR} TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}				-	< 10 < 10	

Lab Cannala Normalian				2250700	2250701	2250702
Lab Sample Number Sample Reference				2259790 BH10/1	2259791 BH11/1	2259792 BH12/1
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied
Time Taken		Ē	Ι.	None Supplied	None Supplied	топе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Pesticides						
Alachlor	μg/kg	10	NONE	-	-	-
Aldrin	μg/kg	10	NONE	-	-	-
Azinphos-ethyl	μg/kg	10	NONE	-	-	-
Azinphos-methyl	μg/kg	10	NONE	-	-	-
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-	-	-
BHC-beta	μg/kg	10	NONE	-	-	-
BHC-delta	μg/kg	10	NONE	-	-	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	-	-
Bifenthrin	μg/kg	10	NONE	-	-	-
Carbophenothion	μg/kg	10	NONE	-	1	-
Chlordane-cis	μg/kg	10	NONE	-	-	-
Chlordane-trans	μg/kg 	10	NONE	-	-	-
Chlorfenvinphos	μg/kg	10	NONE	-	-	-
Chlorothalonil	μg/kg	20	NONE	-	-	-
Chlorpyrifos	μg/kg	10	NONE	-	-	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	-
Cyhalothrin (Lambda)	μg/kg	10	NONE	-	-	-
Cypermethrin (Sum)	μg/kg	10	NONE NONE	-	-	-
DDD-o,p'	μg/kg	10		-	-	-
DDD-p,p'	μg/kg μg/kg	10 10	NONE NONE	-	-	-
DDE-o,p'	μg/kg	10	NONE	-	-	-
DDE-p,p'	μg/kg	10	NONE		-	
DDT-o,p' DDT-p,p'	μg/kg	10	NONE	-	-	-
Deltamethrin	µg/kg	10	NONE			
Demeton-O	µg/kg	10	NONE	-	-	-
Demeton-S	μg/kg	10	NONE	_	-	-
Diazinon	μg/kg	10	NONE	_	_	
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	-	_	-
Dichlorvos	μg/kg	10	NONE	-	_	_
Dieldrin	μg/kg	10	NONE	_	-	_
Dimethoate	μg/kg	10	NONE	_	-	-
Dimethylvinphos	μg/kg	10	NONE	-	-	-
Endosulfan I (alpha isomer)	μg/kg	10	NONE	-	-	-
Endosulfan II (beta isomer)	μg/kg	10	NONE	-	-	-
Endosulfan sulfate	μg/kg	10	NONE	-	-	-
Endrin	μg/kg	20	NONE	-	-	-
Endrin aldehyde	μg/kg	10	NONE	-	-	-
Endrin ketone	μg/kg	10	NONE	-	-	-
Ethion	μg/kg	10	NONE	-	-	-
Etrimfos	μg/kg	10	NONE	-	-	-
Fenitrothion	μg/kg	10	NONE	-	-	-
Fenthion	μg/kg	10	NONE	-	-	-
Fenvalerate (Sum)	μg/kg	10	NONE	-	-	-
Heptachlor	μg/kg	10	NONE	-	-	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-	-	-
Hexachlorobenzene	μg/kg 	10	NONE	-	-	-
Hexachlorobutadiene	μg/kg 	10	NONE	-	-	-
Isodrin	μg/kg 	20	NONE	-	-	-
Malathion	μg/kg	10	NONE	-	-	-
Methacrifos	μg/kg	10	NONE	-	-	-
Methoxychlor, p,p'-	μg/kg	20	NONE	-	-	-

Lab Sample Number				2259790	2259791	2259792
Sample Reference				BH10/1	BH11/1	BH12/1
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	0.80
Date Sampled				28/04/2022	28/04/2022	28/04/2022
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mevinphos, E+Z	μg/kg	10	NONE	-	-	-
Omethoate	μg/kg	20	NONE	-	-	-
Parathion	μg/kg	10	NONE	-	-	-
Parathion-methyl	μg/kg	10	NONE	-	-	-
Pendimethalin	μg/kg	10	NONE	-	-	-
Pentachlorobenzene	μg/kg	10	NONE	-	-	-
Permethrin, Cis-	μg/kg	10	NONE	-	-	-
Permethrin, Trans-	μg/kg	10	NONE	-	-	-
Phorate	μg/kg	10	NONE	-	-	-
Phosalone	μg/kg	10	NONE	-	-	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	-
Pirimiphos-methyl	μg/kg	10	NONE	-	-	-
Propetamphos	μg/kg	10	NONE	-	-	-
Propyzamide	μg/kg	10	NONE	-	-	-
Tecnazene	μg/kg	10	NONE	-	-	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	-
Trifluralin	μg/kg	10	NONE	-	-	-

Microbiological (Subcontracted)

Total Coliforms	mpn/g	N/A	NONE	See Attached	-	-
E. Coli	mpn/g	1	NONE	See Attached	-	=
Faecal Streptococci	cfu/g	N/A	NONE	See Attached	-	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Analytical Report Number : 22-55511 Project / Site name: Windmill Meadow

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2259775	BH01/1	None Supplied	0.3	Brown clay and loam with gravel.
2259777	BH01/3	None Supplied	0.8	Brown clay with gravel.
2259778	BH02/1	None Supplied	0.3	Brown loam and sand with gravel and vegetation.
2259779	BH02/2	None Supplied	0.8	Brown clay with gravel and vegetation.
2259780	BH03/1	None Supplied	0.4	Brown clay and sand with gravel and vegetation.
2259782	BH03/3	None Supplied	0.9	Brown clay with gravel.
2259783	BH04/1	None Supplied	0.3	Brown clay and loam with gravel and vegetation.
2259784	BH05/1	None Supplied	0.6	Brown clay and sand with gravel and vegetation.
2259785	BH06/1	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2259786	BH07/1	None Supplied	0.3	Brown clay and loam with gravel and vegetation.
2259787	BH08/1	None Supplied	0.4	Brown clay and loam with gravel and vegetation.
2259789	BH09/1	None Supplied	0.4	Brown clay and loam with gravel and vegetation.
2259791	BH11/1	None Supplied	0.3	Brown clay with gravel.
2259792	BH12/1	None Supplied	0.8	Brown clay with gravel.

Analytical Report Number : 22-55511 Project / Site name: Windmill Meadow

Water matrix abbreviations:
Surface Water (SW) Protable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
E. Coli in soil Subcon	E.Coli in Soil - Subcontracted Analysis	Subcontracted Analysis - See Attached Subcon Report.		W	NONE
Faecal Streptococci in soil Subcon	Faecal Streptococci in Soil - Subcontracted Analysis	Subcontracted Analysis - See Attached Subcon Report.		w	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Total Coliforms Biology in soil Subcon	Total Coliforms in Soil - Subcontracted Analysis	Subcontracted Analysis - See Attached Subcon Report.		w	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

Analytical Report Number: 22-55511 Project / Site name: Windmill Meadow

Water matrix abbreviations:
Surface Water (SW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Pesticides by GC-MS/MS	Determination of Pesticides in soil by GC MS/MS	In-house method	L055B-PL	w	NONE
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

BACTERIOLOGICAL TEST REPORT

#Address: Client:

Job Number: M/182/98695 #Date Tak'n: Report No.: Date Rec'd: Croxley Green Business Park 7 Woodshots Meadow i2 Analytical LTD Croxleý Green Hertfordshire WD18 8YS

PO_S_C5464 Trevor Hill 22-55511

#Order No:

#FAO:

Thu, 28th Apr 2022 00:00 Thu, 5th May 2022

118845.1

Unit 9-10, Riverside Industrial Estate 27 Thames Road Barking, Essex IG11 0ND

Stansted Laboratories LTD

Tel: +44 (0)20 8594 5104 Fax: +44 (0)20 8591 8762 sales@stanstedlabs.co.uk www.stanstedlabs.co.uk

			Items Marked ¤ a	Items Marked a are not included in the UKAS Schedule	Schedule	
Sample ID	#Description & Temperatures		Analysis	Result	Tested	Notes / Species
SL455228 Soil	BH01/2 0.4m		Coliforms ¤	0 MPN/g	05/05/2022	
	Intremp¤ Temp>1Min≖ T	Temp > 2 Min ¤	E.Coli ¤	0 MPN/g	05/05/2022	
			Enterococci ¤	0 cfu/g	05/05/2022	
SL455229	BH03/2 0.5m		Coliforms ¤	0 MPN/g	05/05/2022	
	Int lemp # lemp > 1 Min # l	lemp > 2 Min a	E.Coli ¤	0 MPN/g	05/05/2022	
			Enterococci ¤	700 cfu/g	05/05/2022	
SL455230	BH08/2 0.60m		Coliforms ¤	0 MPN/g	05/05/2022	
	Intremp¤ Temp> 1 Min a l	Temp > 2 Min #	E.Coli ¤	0 MPN/g	05/05/2022	
			Enterococci ¤	0 cfu/g	05/05/2022	
SL455231	BH10/1 0.3m		Coliforms ¤	1700 MPN/g	05/05/2022	
	inkilempa lemp≺lwina i	nemp>∠mina	E.Coli ¤	0 MPN/g	05/05/2022	
			Enterococci ¤	400 cfu/a	05/05/2022	

Method Codes SLM/B312/M - Coliforms and Escherichia coli SLM/B370/M - Enterococci

Legend & Footnotes cfu = Colony Forming Units mpn = Most Probable Number TNTC = Too Numerous to Count #Information supplied by the customer and can affect the validity of results. Sampling is not included in our UKAS Schedule. All Samples Analysed as received.

Disclaimer Results relate to samples tested and should not be reproduced except in full, without the written approval of the laboratory. Interpretations and opinions are not included in our UKAS schedule. 00:00 means time not declared.

Test Report checked by: Anusala Tavarasa

09/05/2022 10:51:11

Date: 09/05/2022 11:49:24

Quality Manager

Test report authorised by

Theepa Supikaran

SLIMS.R.2 - BACTERIOLOGICAL Test Report v9 issued on 09/05/22 by TP

i2 Analytical LTD #Address: Client:

7 Woodshots Meadow Croxley Green Business Park Croxley Green Hertfordshire WD18 8YS

#Date Tak'n: Thu, 28th Apr 2022 00:00 Report No.: 118845.1

Job Number: M/182/98695

Tel: +44 (0)20 8594 5104 Fax: +44 (0)20 8591 8762 sales@stanstedlabs.co.uk www.stanstedlabs.co.uk Unit 9-10, Riverside Industrial Estate 27 Thames Road Barking, Essex IG11 0ND

Stansted Laboratories LTD

22-55511

PO_S_C5464 Trevor Hill

#Order No:

#FAO:

Date Rec'd: Thu, 5th May 2022

----- END OF REPORT -----

Reg. Office: Unit 9-10 Riverside Ind. Estate, 27 Thames Road, Barking, Essex, IG11 0ND

Reg. in England No. 7270283

12.6 Appendix 6 - Adopted Generic Assessment Criteria

12.6.1 Soils Criteria

Residential (Wi	th Home-grown Produce) - 2.5% (Organic Matter
Contaminant	Concentration	Source
	(mg/kg)	
	Heavy Metals	
Arsenic	37	CAT4
Cadmium	11	LQM SULs RWPU 2.5%
Chromium	910	LQM SULs RWPU 2.5%
Chromium - Hexavalent	6	LQM SULs RWPU 2.5%
Copper	2400	LQM SULs RWPU 2.5%
Lead	200	LQM SULs RWPU 2.5%
Mercury	40	LQM SULs RWPU 2.5%
Nickel	180	LQM SULs RWPU 2.5%
Selenium	250	LQM SULs RWPU 2.5%
Zinc	3700	LQM SULs RWPU 2.5%
	VOCs	
Toluene	290	LQM SULs RWPU 2.5%
Benzene	0.42	CAT4
Ethylbenzene	110	LQM SULs RWPU 2.5%
m,p xylenes	130	LQM SULs RWPU 2.5%
	PAHs	
Acenaphthylene	420	LQM SULs RWPU 2.5%
Acenaphthene	510	LQM SULs RWPU 2.5%
Fluorene	400	LQM SULs RWPU 2.5%
Phenanthrene	220	LQM SULs RWPU 2.5%
Anthracene	5400	LQM SULs RWPU 2.5%
Fluoranthene	560	LQM SULs RWPU 2.5%
Pyrene	1200	LQM SULs RWPU 2.5%
Benzo(a)anthracene	11	LQM SULs RWPU 2.5%
Chrysene	22	LQM SULs RWPU 2.5%
Benzo (b) fluoranthene	3.3	LQM SULs RWPU 2.5%
Benzo(k)fluoranthene	93	LQM SULs RWPU 2.5%
Benzo(a)pyrene	2.4	CAT4
Dibenz-a-h-anthracene	0.28	LQM SULs RWPU 2.5%
Indeno(1,2,3-cd)pyrene	36	LQM SULs RWPU 2.5%
Benzo (g,h,i) perylene	340	LQM SULs RWPU 2.5%
Napthalene	5.6	LQM SULs RWPU 2.5%
•	troleum Hydrocarbons - TPH (CW	
Aliphatics >C5-6	78	LQM SULs RWPU 2.5%
Aliphatics >C6-8	230	LQM SULs RWPU 2.5%

Site Ref: Windmill Meadow, Windmill Road, Towersey, OX9 3QQReport Reference: PH2-2022-000026

Nate: June 22

Residential (W	/ith Home-grown Produce) - 2.5% (Organic Matter
Contaminant	Concentration (mg/kg)	Source
Aliphatics >C8-10	65	LQM SULs RWPU 2.5%
Aliphatics >C10-12	330	LQM SULs RWPU 2.5%
Aliphatics >C12-16	2400	LQM SULs RWPU 2.5%
Aliphatics >C16-C35	92000	LQM SULs RWPU 2.5%
Aliphatics >C21-35	1500	LQM SULs RWPU 2.5%
Aliphatics >C35-44	92000	LQM SULs RWPU 2.5%
Aromatics >C5-7	0.17	LQM SULs RWPU 2.5%
Aromatics >C8-10	83	LQM SULs RWPU 2.5%
Aromatics >C10-12	180	LQM SULs RWPU 2.5%
Aromatics >C12-16	330	LQM SULs RWPU 2.5%
Aromatics >C16-21	540	LQM SULs RWPU 2.5%
Aromatics >C16-21	1500	LQM SULs RWPU 2.5%
Aromatics >C35-44	1500	LQM SULs RWPU 2.5%

The LQM values quoted are copyright Land Quality Management Limited reproduced with permission; publication number S4UL3637. All rights reserved.

LQM SULs RWPU 2.5% - LQM Suitable for Use Levels - Residential (With Home-grown Produce – 2.5% Organic Matter)

CAT4 – Category 4 Screening Levels

Date: June 22

12.7 Appendix 7 – Statistical Analysis Summary

ENVIRONMENTAL CONSULTING.	NG. SOFTW.	ARE & TRAINING																ě	•					i		
Parameter	GAC	GAC Source s	No. Samples	Mean Maximum Excluded	ximum E	Outliers excluded	Value Exce	Mean Exceedence Dev	Std N Deviation De	Non- W_Shapiro- Detects Wilk	piro- W_Critical Ik		Distribution T Statistic	stic percentile	tile Value Test	st Max Value Test Result	Sample T	Sample T	One Sample Te Test Result	Test - Evidence	Kcrit- Chebychev Cl	UCL95- Chebychev C	KO- Ch Chebychev Te	Chebychev Evi	Evidence E)	Exceeding
Arsenic	37	Category 4 Screening Levels - Residential (with	12	14.65	30		BH12/1	No.	5.54	0 0.7869	69 0.859	59 Non-Normal	-mal 1.796			ž		-1.782	Reject H0 t0 <	99.5	4.36 21	21.6244515 -1	-13.9718513 Reje	2	66	None
an imi	:	homegrown produce) LQM Suitable for Use Levels - Residential	5	8	2	-	PH03/4									Outlier Max. Value is			t(n -1, 0.95) Reject H0 t0 <	2 00				92.	9	None
Canal	=	(With Plant Uptake) IOM Suitable for I se levek - Residential	4	5	ò		BH0Z/1												t(n -1, 0.95) Reject H0 t0 <	n n					0	
Chromium	910	(With Plant Uptake)	12	25.63	33	0	вно1/3	oN ON	6.72	0 0.7899	99 0.859	59 Non-Normal	mal 1.796	6 29.1181	31 PASSED		-455.79	-1.782	t(n -1, 0.95)	99.2	4.36 34	34.0930227	-455.78963		66	None
Copper	2400	LQM Suitable for Use Levels - Residential (With Plant Uptake)	12	24.33	100	0	вно2/1	No 2	24.27	0 0.4969	69 0.859	59 Non-Normal	mal 1.796	6 36.9176	76 PASSED	Max. Value is Outlier	339.049	-1.782	Reject H0 t0 < t(n -1, 0.95)	99.5	4.36 54	54.8832033 -3	-339.049125 Reje	Reject HO (kO < kcrit)	66	None
Mercury	40	LQM Suitable for Use Levels - Residential (With Plant Uptake)	12	0	0	0	N/A	No	0	12 0.4969	69 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -3	-339.049125 Reje	Reject HO (kO < kcrit)	66	None
Nickel	180	LQM Suitable for Use Levels - Residential	12	36.68	84	0	BH01/3	No 2	24.22	0 0.8122	22 0.859	59 Non-Normal	mal 1.796	6 49.23	3 PASSED	Max. Value	-20.503	-1.782	Reject H0 t0 <	99.5	4.36 67	67.1537846 -2	-20.5026877 Reje	Reject HO (ko	66	None
Lead	200	LQM Suitable for Use Levels - Residential (Mith Plant Lintske)	12	23.68	57	0	вно2/1	No 1	12.01	7777.0 0	77 0.859	59 Non-Normal	mal 1.796	6 29.8996	96 PASSED	-	s -50.876	-1.782	Reject H0 t0 <	99.5	4.36 38	38.7858351 -5	-50.8758777 Reje	(ko	66	None
Selenium	250	LQM Suitable for Use Levels - Residential	12	0	0	0	N/A	8	0	12 0.5045	45 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 ئ	-50.8758777 Reje	Reject HO (kO	66	None
Zinc	3700	(With Plant Uptake) LQM Suitable for Use Levels - Residential	12	88.17	360	0	BH02/1		86.54	0 0.461	51 0.859	No		133	-	ž	÷	~	Reject H0 t0 <	99.5		7145		< Karit) Reject HO (KO	66	None
Benzene		(With Plant Uptake) Category 4 Screening Levels - Residential (with	9	0	0	0	N/A		0	6 0.461						Outlier N/A	N/A		t(n -1, 0.95) N/A	99.5				Reject H0 (k0	66	aoo
Fthulhenzene	110	homegrown produce) LQM Suitable for Use Levels - Residential					4/2	2		6 0.461					0/N	4/N	V/N	4/N	4/N	00	4 36					acon
Trilyberizerie	9	(With Plant Uptake - 2.5% Organic Matter) LQM Suitable for Use Levels - Residential	. 4				2 2	2 2								C/N	C 5	2 4	C 4/12	7. 0	S 4			Q Q	n 9	200
200	000	(With Plant Uptake - 2.5% Organic Matter) LQM Suitable for Use Levels - Residential		> 0	> 0	> 0		2	> 0						V/N					n .	200			< kcrit) Reject HO (KO	n c	5
Toluene	230	(With Plant Uptake - 2.5% Organic Matter)	٥	0	0	0	N/A	o Z	0	6 0.461				0	N/A	N/A	Z/A	Υ Y	A/A	99.5	4.36				56	None
Napht halene	5.6	LQM Surrable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	No	0	12 0.461	1 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Keje	keject HO (ko < kcrit)	66	None
Phenanthrene	220	LQM Suitable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	No	0	12 0.461	1 0.859	A/N 65	1.796	0 9	N/A	N/A	A/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje		66	None
Anthracene	5400	LQM Suitable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	No	0	12 0.461	0.859	89 N/A	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject H0 (k0 < kcrit)	66	None
Fluoranthene	260	LQM Suitable for Use Levels - Residential	12	0	0	0	N/A	No No	0	12 0.461	51 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	144.578812 Reje	Reject HO (kO	66	None
Benzo (a) anthracene	11	LQM Suitable for Use Levels - Residential OM/th plant Liptabe - 2 5% Organic Matter)	12	0	0	0	N/A	No	0	12 0.461	51 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	A/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject HO (KO	66	None
Chrysene	22	LQM Suitable for Use Levels - Residential	12	0	0	0	N/A	No.	0	12 0.461	51 0.859	N/A	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Rej€	Reject HO (kO	66	None
Benzo (k) fluoranthene		(With Plant Uptake - 2.5% Organic Matter) LQM Suitable for Use Levels - Residential	12	0	0	0	N/A	92	0	12 0.461	0.859	A/N 69		0	A/N	N/A	N/A	N/A	N/A	99.5	4.36	0		Reject HO (KO	66	None
Renzo (a) nurene	2 4	(With Plant Uptake - 2.5% Organic Matter) Category 4 Screening Levels - Residential (with	1 2				4/2	2		12 0.461					4/N	4/N	4/2	4/N	- 4/N	2 00	4 36			< karit) Reject HO (kO		900
		homegrown produce) LOM Suitable for Use Levels - Residential		,	,	,		2	,															< kcrit) Reject HO (k0	3	2
Indeno (1,2,3 -cd) pyrene	e 36	(With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	No No	0	12 0.461	51 0.859	N/A	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0	-144.578812	< kcrit)	66	None
Benzo (ghi) perylene	340	LQM Surtable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	8	0	12 0.461	51 0.859	89 N/A	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject HO (kO < kcrit)	66	None
Acenaphthylene	420	LQM Suitable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	No	0	12 0.461	1 0.859	A/N 65	1.796	0 9	N/A	N/A	A/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject H0 (k0 < kcrit)	66	None
Acenaphthene	510	LQM Suitable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	12	0	0	0	N/A	8	0	12 0.461	51 0.859	59 N/A	1.796	0 9	N/A	N/A	N/N	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject H0 (k0 < karit)	66	None
Fluorene	400	LQM Suitable for Use Levels - Residential (With Plant Lotake - 2.5% Organic Matter)	12	0	0	0	N/A	No No	0	12 0.461	51 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject HO (kO < kcrit)	66	None
Pyrene	1200	LQM Suitable for Use Levels - Residential With Plant Lintake - 2 5% Organic Matter)	12	0	0	0	N/A	No No	0	12 0.461	51 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject HO (kO	66	None
Benzo (b) fluoranthene	3.3	LQM Suitable for Use Levels - Residential Mith plant Liptaba - 2 5% Organic Matter)	12	0	0	0	N/A	No	0	12 0.461	0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject HO (ko	66	None
Dibenzo (ah) anthracene	e 0.28	(With right Options - 2.5% Organic Matter) LQM Suitable for Use Levels - Residential Mith plant Liptako - 2.5% Organic Matter)	12	0	0	0	N/A	No No	0	12 0.461	51 0.859	A/N 65	1.796	0 9	N/A	N/A	N/A	N/A	N/A	99.5	4.36	-1-	-144.578812 Reje	Reject HO (kO	66	None
Aliphatic G-G6	28	LQM Suitable for Use Levels - Residential	9	0	0	0	N/A	No No	0	6 0.461	51 0.859	N/A	2.015	0	N/A	N/A	A/A	N/A	N/A	99.5	4.36	0	-144.578812 Reje	Reject HO (kO	66	None
Aliphatic >C6-C8	230	(With Plant Uptake - 2.3% Organic Matter) LQM Suitable for Use Levels - Residential Mith Blant Lintake - 3 5% Organic Matter)	9	0	0	0	N/A	o _N	0	6 0.461	51 0.859	A/N 65	2.015	2	A/N	N/A	A/A	N/A	N/A	99.5	4.36	0	-144.578812 Reje	Reject HO (KO	66	None
Ali phatic >C8-C10	65	LQM Suitable for Use Levels - Residential	9	0	0	0	N/A	o _N	0	6 0.461	51 0.859	A/N 65	2.015	0	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0	-144.578812 Reje	ko	66	None
Aliphatic >C10-C12	330	LQM Suitable for Use Levels - Residential	9	0	0	0	N/A	No	0	6 0.461	51 0.859	89 N/A	2.015	0	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0	.144.578812 Rej€	Reject HO (kO	66	None
Aliphatic >C12-C16	2400	LQM Suitable for Use Levels - Residential	9	0	0	0	N/A	No.	0	6 0.461	51 0.859	89 N/A	2.015	0	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	144.578812 Reje	Reject HO (KO	66	None
Aliphatic >C21-C35	1500	(With Plant Optake - 2.5% Organic Matter) LQM Suitable for Use Levels - Residential	9	0	0	0	Α/Ν	o N	0	6 0.461	51 0.859	A/N 65	2.015	0	V/N	N/A	N/A	N/A	N/A	99.5	4.36	0	-144.578812 Reje	Reject HO (KO	66	aoo
000	8	(With Plant Uptake - 2.5% Organic Matter) LQM Suitable for Use Levels - Residential	ų	c	c	c	. 4/14	2		940					. *	. 4/14			. ***	9	20			< kcrit) Reject HO (kO	9	Noon
Aromatic >C8-C10	8	(With Plant Uptake - 2.5% Organic Matter)	٥	0	0	0	ν/ν V	o Z	0	6 0.461				0	ď.	N/A	ď Ž	A/A	N/A	99.5	4.30				55	None
Ar om atic >C10-C12	180	(With Plant Uptake - 2.5% Organic Matter)	9	0	0	0	N/A	0 N	0	6 0.461	51 0.859	59 N/A	2.015	2 0	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0	-144.578812 hejs	< kcrit)	66	None
Ar om atic >C12-C16	330	LQM Suitable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	9	0	0	0	N/A	No No	0	6 0.461	51 0.859	N/A	2.015	5 0	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	.144.578812 Reje	Reject H0 (k0 < kcrit)	66	None
Ar om atic >C16-C21	240	LQM Suitable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	9	0	0	0	N/A	No	0	6 0.461	51 0.859	N/A	2.015	5 0	N/A	N/A	N/A	N/A	N/A	99.5	4.36	0 -1	-144.578812 Reje	Reject H0 (k0 < kcrit)	66	None
Aromatic >C21-C35	1500	LQM Sultable for Use Levels - Residential (With Plant Uptake - 2.5% Organic Matter)	9	0	0	0	N/A	o N	0	6 0.461	51 0.859	A/N 65	2.015	2	N/A	N/A	A/A	N/A	N/A	99.5	4.36	. 0	-144.578812 Reje	Reject H0 (k0 < kcrit)	66	None

12.8 Appendix 8 - Ground Gas Monitoring Results

Site Name:							Windmill Meadow	leadow							
Date	Monitoring Undertaken By	Borehole Reference	Flow	Methane	Carbon Dioxide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	PID	Water Level	Well Depth	Bal.	Rel.	Weather	Barometric
dd/mm/yy	Name	BH#	//hr	%	%	%	mdd	mdd	mdd	Ibqui	lbqm	%	%		bressure
06/06/30/30	doctil	E0HB	0.2	0.0	9.0	20.1	0.0	0.0	0.0	DRY	6.0	79.3	00.0	Dry and	1010
00/03/2022	IIGAIIL	BH07	0.2	0.0	1.1	20.4	0.0	0.0	5.3	DRY	1.0	78.5	0.02	Overcast	0101
12/05/2022	Ctorio	BH03	0.2	0.0	1.3	20.2	0.0	0.0	0.0	DRY	1.0	78.5	0.15	Dry and	1010
13/03/2022	Oleve	BH07	0.1	0.0	1.1	20.3	0.0	0.0	1.1	DRY	1.0	78.6	-0.05	Overcast	2101
20/05/30/22	dactil	E0HB	0.2	0.0	1.3	20.1	0.0	0.0	0.5	DRY	0.85	9.87	00'0	Rainy/	1011
20/03/20/2		BH07	0.2	0.0	1.2	20.4	0.0	0.0	1.2	DRY	1.05	78.4	0.02	Cloudy	-

12.9 Appendix 9 - Assessment Methodology

- Severity considers the potential impact of the linkage on the receptors if the linkage was active. Categories range from slight/superficial to fatal.
- Likelihood considers the chances of the linkage occurring and is classified into categories from improbable to frequent.

By assigning scores with each of the above categories, the risk assessment can be undertaken using the formula:

RISK = LIKELIHOOD × SEVERITY

The matrix given in Table 7 provides a means of calculating the overall risk; while Table 7 provides the qualitative assessment based on the risk score.

Table 6: Contamination Risk Matrix

				Potential Severit	у	
		Fatal 5	Major 4	Moderate 3	Minor 2	Slight 1
	Frequent 5	Very High	High	Moderate	Low - Moderate	Low
	Probable 4	High	High	Moderate	Low - Moderate	Low
Probable Likelihood	Possible 3	Moderate	Moderate	Low - Moderate	Low - Moderate	Very Low
	Remote 2	Low - Moderate	Low - Moderate	Low - Moderate	Low	Very Low
	Improbable 1	Low	Low	Very Low	Very Low	Very Low

Table 7: Assessment description for risk scores

Risk Score	Risk Assessment
1-3	Very Low
4-5	Low
6-10	Low to Moderate
11-15	Moderate
16-20	High
21-25	Very High

Date: June 22

Table 8: Risk Classification System

Risk Term	Description
Very Low	The presence of an identified hazard does not give rise to the potential to cause significant harm to groundwater, surface water, ecological and/or property receptors. In the event of such harm being realized, it is not likely to be Severe.
Low	The presence of an identified hazard does not give rise to the potential to cause significant harm to human health receptors. In the event of such harm being realized, it is not likely to be Severe.
Low to Moderate	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realized, would at worst normally be mild.
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
High	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remedial action. Investigation is required and remedial works may be necessary in the short term and are likely over the longer term.
Very High	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or, there is an evidence that severe harm to a designated receptor is currently happening. Urgent investigation and remediation are likely to be required.

13 ABBREVIATIONS

Abbreviation	Description
BTEX	Benzene, Tolulene, Ethylene and Xylene
C.	Circa
CLRA	Contaminated Land Risk Assessment
CSM	Conceptual Site Risk Model
EA	Environment Agency
GAC	Generic Assessment Criteria
IPC	Integrated Pollution Control
LAPC	Local Authority Pollution Control
LQM S4ULs	Land Quality Management Suitable for Use Levels
NPPF	National Planning Policy Framework
OS	Ordnance Survey
PAHs	Polycyclic aromatic hydrocarbons
Part IIA	Part IIA of the Environmental Protection. Act 1990
PID	Photoionization Detector
PCB	Polychlorinated Biphenyl
PCLU	Potentially Contaminative Land Use
PPL	Potential Pollutant Linkage
PRA	Preliminary Risk Assessment
PSPPL	Potentially Significant Potential Pollutant Linkage
RWHP	Residential with Home-grown Produce
SI	Site Investigation
SOM	Soil Organic Matter
SPOSH	Significant Possibility of Significant Harm
TOC	Total Organic Carbon
TPH	Total Petroleum Hydrocarbons
TPHCWG	Total Petroleum Hydrocarbon Criteria Working Group
UXO	Unexploded Ordnance

14 REFERENCES

- 1. CLAIRE\ Chartered Institute of Environmental Health (May 2008) Guidance on comparing soil contamination data with a critical concentration
- 2. Department of Environment (1994), CLR 3, Documentary Research on Industrial Sites, 3. Contaminated Land Research Report
- 3. Environment Agency (2005) Model Procedures for the Management of Land Contamination
- 4. British Standards Institution (2011) BS 10175 2011 Investigation of Contaminated Sites Code of Practice
- 5. Department of Environment (2002) Priority Contaminants Report, CLR8
- 6. Department of Environment: Contaminated Land Research Report No. 6, (1995) Prioritisation and Categorisation Procedure for Sites which may be contaminated
- 7. Department of Environment, Food and Rural Affairs, Environment Agency (2002) The Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms
- 8. National House-Building Council, Environment Agency, Chartered Institute of Environmental Health (2008) Guidance for the Safe Development of Housing on Land Affected by Contamination R&D Publication 66: 2008.

Date: June 22